"well-defined"

記号・記法

【数学】well-defined, ill-definedとは

数学における well-defined, ill-defined とは,それぞれ「ちゃんと定義できている」,「定義があいまい・無効・無意味である」ことを意味します。この言葉について,具体例も交えながら,分かりやすく紹介しましょう。
群・環・体

剰余環(商環)とは~定義と具体例~

剰余環 (factor ring),あるいは商環(quotient ring)とは,両側イデアルによる同値類で割った商集合に入る環構造を指します。剰余環を調べることは,環論において最も基本的なことの一つです。剰余環について,定義がwell-definedであることと,具体例を挙げましょう。
測度論

【数学科向け】ルベーグ積分の定義を段階を踏んで解説する

数学科向けに,ルベーグ積分の定義を「非負単関数→非負可測関数→一般の可測関数」の順に述べていきましょう。本記事は「お気持ち」記事ではなく,ルベーグ積分を厳密に定義していきます。測度空間・単関数・可測関数などはある程度既知とします。
群・環・体

剰余群(商群)とは~定義・具体例・性質の証明~

剰余群(商群)とは,群の剰余類の商集合に演算を入れて再び「群」と思ったものを指します。意味不明かもしれませんが,順を追って解説していきます。剰余群(商群)の定義にあたっては,well-defined の概念が非常に大事になってきますから,そこも踏まえてしっかりと理解していきましょう。
群・環・体

剰余類と部分群の指数~定義と具体例~

群論における剰余類(左剰余類・右剰余類)と剰余集合(左剰余集合・右剰余集合)と部分群の指数の概念を,手順を追って解説していきます。少々長いですが,群論における基本的で重要な概念ですから,ゆっくりと理解していきましょう。
解析学(大学)その他

カントール集合の定義と性質3つの証明

カントール集合 (Cantor set) とは,フラクタルと呼ばれる図形の1つで,連続体濃度を持つにもかかわらず,ルベーグ測度が0となる集合として有名です。カントール集合について,その定義と性質3つとその証明を行いましょう。
線形代数学

ベクトル空間の基底と次元~定義と具体例5つ~

ベクトル空間における「基底 (basis)」とは,ベクトル空間の元を一次結合で表すためのものであり,「次元 (dimension)」は,その基底の個数を指します。これについての定義を述べ,具体例を挙げましょう。
LaTeX

【LaTeX】ハイフン,en,emダッシュ(横棒)とその使い分け

LaTeXにおけるハイフン,enダッシュ,emダッシュの出力方法(コマンド)と,その使い分けを紹介します。

全記事一覧

当サイトにおける記事の一覧です。カテゴリー別にすべての記事が掲載されています。
タイトルとURLをコピーしました