"well-defined"

記号・記法

【数学】well-defined, ill-definedとは

数学における well-defined, ill-defined とは,それぞれ「ちゃんと定義できている」,「定義があいまい・無効・無意味である」ことを意味します。この言葉について,具体例も交えながら,分かりやすく紹介しましょう。
集合と位相

ベルンシュタインの定理とその証明【双方単射があれば全単射がある】

ベルンシュタインの定理(Schröder–Bernstein theorem)とは,2つの集合それぞれを定義域・終域とする双方向の単射があれば,全単射があるという定理です。ベルンシュタインの定理について,イメージ図を交えて証明していきましょう。
解析学(大学)その他

カントール関数のさまざまな定義とその重要な性質5つ

カントール関数 (Cantor function) とは,一様連続だが絶対連続でない関数の例の一つです。悪魔の階段ともいわれ,病的な関数として知られています。カントール関数を分かりやすく定義し,その性質を証明していきましょう。
測度論

完備な測度と測度空間の完備化

完備な測度空間とは,零集合の任意の部分集合が可測,従って零集合になる測度空間のことをいいます。任意の測度空間は完備な拡張を持つことが知られています。完備な測度と,任意の測度空間の完備化について紹介しましょう。
測度論

符号付き測度・複素測度の定義と分解定理

符号付き測度・複素測度とは負の値や複素数値を許すような測度のことです。符号付き測度・複素測度について,その定義と例,分解定理を解説しましょう。
群・環・体

剰余環(商環)とは~定義と具体例~

剰余環 (factor ring),あるいは商環(quotient ring)とは,両側イデアルによる同値類で割った商集合に入る環構造を指します。剰余環を調べることは,環論において最も基本的なことの一つです。剰余環について,定義がwell-definedであることと,具体例を挙げましょう。
測度論

【数学科向け】ルベーグ積分の定義を段階を踏んで解説する

数学科向けに,ルベーグ積分の定義を「非負単関数→非負可測関数→一般の可測関数」の順に述べていきましょう。本記事は「お気持ち」記事ではなく,ルベーグ積分を厳密に定義していきます。測度空間・単関数・可測関数などはある程度既知とします。
群・環・体

剰余群(商群)とは~定義・具体例・性質の証明~

剰余群(商群)とは,群の剰余類の商集合に演算を入れて再び「群」と思ったものを指します。意味不明かもしれませんが,順を追って解説していきます。剰余群(商群)の定義にあたっては,well-defined の概念が非常に大事になってきますから,そこも踏まえてしっかりと理解していきましょう。
群・環・体

剰余類と部分群の指数~定義と具体例~

群論における剰余類(左剰余類・右剰余類)と剰余集合(左剰余集合・右剰余集合)と部分群の指数の概念を,手順を追って解説していきます。少々長いですが,群論における基本的で重要な概念ですから,ゆっくりと理解していきましょう。
解析学(大学)その他

カントール集合の定義と性質3つの証明

カントール集合 (Cantor set) とは,フラクタルと呼ばれる図形の1つで,連続体濃度を持つにもかかわらず,ルベーグ測度が0となる集合として有名です。カントール集合について,その定義と性質3つとその証明を行いましょう。