集合と位相 可算コンパクトの定義・性質と証明・具体例
可算コンパクトとは,任意の可算開被覆が,有限部分被覆をもつ空間のことを言います。「可算」ではなく任意の濃度を許すと,コンパクトの定義になります。可算コンパクトについて,その定義と性質の証明・具体例を紹介しましょう。
集合と位相
集合と位相
集合と位相
集合と位相
集合と位相
集合と位相
集合と位相
集合と位相
集合と位相
集合と位相