測度論

測度論

完備な測度と測度空間の完備化

完備な測度空間とは,零集合の任意の部分集合が可測,従って零集合になる測度空間のことをいいます。任意の測度空間は完備な拡張を持つことが知られています。完備な測度と,任意の測度空間の完備化について紹介しましょう。
測度論

単調関数はほとんどいたるところ微分可能である証明

単調増加または単調減少関数,より一般に有界変動関数は,ほとんどいたるところ微分可能であることが知られています。これについて,ラドンニコディムの定理やルベーグの微分定理を用いた証明を紹介しましょう。
測度論

ルベーグの微分定理とその証明~測度の微分を添えて~

ルベーグの微分定理(Lebesgue differentiation theorem)は,リーマン積分のときに成り立っていた「積分して微分すると元に戻る」という性質の,ルベーグ積分版といえます。ルベーグの微分定理とその証明を行い,測度の微分について少し掘り下げましょう。
測度論

測度の絶対連続性・同値性・特異性とルベーグ分解

同じ可測空間に二つ測度があったときに,その二つの測度の関係性を述べるのが測度の絶対連続性・同値性・特異性です。また,任意のσ有限な測度は,別の測度に関して絶対連続なものと特異なものの和に分解できることが知られており,これをルベーグの分解定理といいます。測度の絶対連続性・同値性・特異性と,ルベーグの分解定理について,証明付きで紹介しましょう。
測度論

ラドンニコディムの定理とその2通りの証明

ラドンニコディムの定理(Radon–Nikodym theorem)と呼ばれる,測度論における「微分」を扱う定理を紹介しましょう。これは,確率論における条件付き期待値にも使われる概念であり,とても重要です。
測度論

符号付き測度・複素測度の定義と分解定理

符号付き測度・複素測度とは負の値や複素数値を許すような測度のことです。符号付き測度・複素測度について,その定義と例,分解定理を解説しましょう。
測度論

測度論におけるシュタインハウスの定理とその証明

R^Nにおける可測集合は,それ自身はなかなか実態がよくわからないものかもしれません。しかし,零集合でない可測集合を2つ用意して,A+Bを考えると,これは開集合を含むようになります。シュタインハウスの定理(Steinhaus's theorem)といわれる本定理を紹介し,証明しましょう。
測度論

【ヴィタリ集合】ルベーグ非可測集合の存在とその証明

ヴィタリ集合(vitali set)とは,剰余群R/Qにおける各代表元の集合を指し,選択公理を仮定することで存在が認められます。ヴィタリ集合はルベーグ非可測集合の例として有名です。ヴィタリ集合について,その構成とルベーグ非可測であることの証明を行いましょう。
測度論

本質的上限・本質的下限(esssup,essinf)とは何か

測度論・関数解析における本質的上限・本質的下限(esssup, essinf)とは,零集合を無視した上限・下限のことを言います。本質的上限・本質的下限について,ちゃんとした定義と具体例・性質を挙げましょう。
測度論

単調族の定義と単調族定理の証明

集合の部分集合族が「単調族 (monotone class) 」であるとは,無限個の集合の上昇列や下降列に関して閉じていることを言います。単調族について,その詳しい定義と,有名で大切な単調族定理の証明を行いましょう。
フォローする