測度論

測度論

ルベーグの収束定理(優収束定理)とその例題・証明

ルベーグの収束定理 (優収束定理; dominated convergence theorem, DCT) とは,ルベーグ積分・測度論における「積分と極限の交換定理」の1つで,ルベーグ積分の根幹をなす定理といえます。ルベーグの収束定理について,その主張と例題・証明を行っていきましょう。
測度論

Fatouの補題とその証明・具体例・活用例

測度論・ルベーグ積分におけるFatouの補題 (Fatou's lemma;ファトウの補題) は,収束定理の中で大事な定理の一つです。Fatouの補題について,その主張と証明,さらに活用例・具体例を解説していきましょう。
測度論

【測度論】単調収束定理とその応用・証明

測度論・ルベーグ積分における単調収束定理 (monotone convergence theorem; MCT) とは,非負可測関数の上昇列に対し,極限と積分の交換が可能であるという定理です。ルベーグ積分における基本的かつ重要な収束定理の一つです。これについて,その主張と証明を行いましょう。
測度論

【数学科向け】ルベーグ積分の定義を段階を踏んで解説する

数学科向けに,ルベーグ積分の定義を「非負単関数→非負可測関数→一般の可測関数」の順に述べていきましょう。本記事は「お気持ち」記事ではなく,ルベーグ積分を厳密に定義していきます。測度空間・単関数・可測関数などはある程度既知とします。
測度論

ほとんどいたるところ(almost everywhere, a.e.)の議論

測度論においては,ほとんどいたるところ(almost everywhere, a.e.)を用いた議論が頻繁に出てきます。 「ほとんどいたるところ」の定義と具体例について,丁寧に解説しましょう。
測度論

ディンキン族定理(π-λ定理)とその証明

ディンキン族定理あるいはπ-λ定理とは,測度論の深い・複雑な議論を展開するにあたって重要な定理です。本記事では,まずディンキン族定理に必要なπシステム(乗法族)とλシステム(ディンキン族)の概念について定義し,ディンキン族定理を証明します。
測度論

測度の定義と具体例4つ・性質5つを証明付きで徹底解説

測度論の基盤である「測度 (measure) 」について,その定義と具体例4つ・基本的な性質5つを順番に解説していきましょう。どれも測度論の最も基本的な概念ですから,しっかり理解していきましょう。可測空間・可測集合の概念は既知とします。
測度論

単関数とは何か~定義と可測関数の単関数近似~

(可測)単関数 (simple function) とは,値域が有限個(有限集合)である可測関数のことを指します。単関数の定義と「任意の可測関数は単関数で近似できること」の証明を解説しましょう。
測度論

可測関数とは~定義と理解しておくべき大事な性質~

可測関数(可測写像, measurable function)とは,可測空間の間に定義されるいわゆる「構造を保つ関数」のことをいい,ルベーグ積分を考えることのできる大事な関数です。可測関数の定義を行い,マスターすべき大事な性質を一気に紹介・証明しましょう。
測度論

ボレル集合とは~定義と性質~

ボレル集合 (Borel set) とは,開集合から生成されるσ-加法族の元のことを言います。「生成される」とは,簡単に言うと「高々可算個の集合の共通部分・和集合・補集合・差集合を取る操作」を高々可算回行うことです。まずボレル集合の定義を述べ,それから実数上のボレル集合族は区間で生成されることを証明しましょう。
タイトルとURLをコピーしました