代数学(大学)

数論

フェルマーの小定理とその3通りの証明

フェルマーの小定理 (Fermat's little theorem) とは,整数の剰余に関する有名な定理です。これについて,その主張と証明3通りの解説をしましょう。最後には,その一般化も紹介します。
数論

超越数・代数的数とは~定義・例と基本的な性質~

「代数的数 (algebraic number)」とは,有理数係数の(多項式)= 0 の解になり得る複素数を指し,「超越数 (transcendental number)」とは,そうでない複素数を指します。これについて,定義・例と基本的な性質を紹介します。
線形代数学

さまざまな行列47個一覧

名前の付いた,さまざまな行列をまとめます。本サイト内で解説のあるものは,そのリンクを一緒に載せます。
線形代数学

べき零行列の定義・例・性質7つとその証明

べき零行列 (nilpotent matrix) とは,行列のべき乗について,A^k=O (右辺は零行列)となるような行列のことです。べき零行列の定義と例,そして性質について,順番に解説しましょう。
線形代数学

固有ベクトル・固有空間の定義・求め方・性質

Ax=λxをみたすxを固有ベクトル (eigenvector) といい,その集合を固有空間 (eigenspace) と良います。これについて,その定義を述べてから,求め方を具体例を含め解説し,最後に性質を述べましょう。
線形代数学

行列で連立一次方程式を解く方法~計算の手順~

連立一次方程式は,行列の行基本変形によるガウスの消去法(掃き出し法)を用いて,比較的簡単に解くことができます。これについて,具体的な計算手順を分かりやすく解説し,例題も交えながら確認していきましょう。
線形代数学

連立一次方程式の基本解・特殊解と解空間の性質

連立一次方程式における,基本解 (fundamental solution)・特殊解 (particular solution) と解空間 (solution space) の定義とその性質について,理解しておくべき重要な事項を紹介し,証明しましょう。
線形代数学

随伴行列(エルミート転置,共役転置)の定義と性質10個

随伴行列 (Hermitian transpose),あるいはエルミート転置や共役転置と呼ばれる行列は,元の行列の各成分で複素共役を取り,それを転置させた行列のことを指します。これについて,その定義と具体例,性質を詳しく解説しましょう。
線形代数学

連立一次方程式が解をもつ条件(行列)とその証明

連立一次方程式は,行列を用いて記述することができ,それが解をもつかどうかは,行列のランクを用いて記述することができます。この定理について紹介し,証明しましょう。後半では,解が「ただ一つ」になる必要十分条件も扱います。
線形代数学

係数行列・拡大係数行列とは

連立一次方程式の係数を並べた行列を「係数行列 (coefficient matrix)」それに右辺の値を合体させた行列を「拡大係数行列 (augmented coefficient matrix)」といいます。これについて,その定義と具体例を紹介します。
数学の景色をフォローする
タイトルとURLをコピーしました