用語・記号の定義

数論

超越数・代数的数とは~定義・例と基本的な性質~

「代数的数 (algebraic number)」とは,有理数係数の(多項式)= 0 の解になり得る複素数を指し,「超越数 (transcendental number)」とは,そうでない複素数を指します。これについて,定義・例と基本的な性質を紹介します。
集合と位相

完備とは~実数の完備性・距離空間の完備性~

数学において,完備 (complete) であるとは,コーシー列が常に収束することを指します。これについて,「実数における完備性」と「距離空間における完備性」を分けて解説しましょう。
微分積分学(大学)

包絡線とは~定義と求め方と例題4つ~

「包絡線 (envelope) 」とは,曲線族全てに接しているような曲線のことを言います。これについて,その厳密な定義と,求め方の例題を解説しましょう。
集合と位相

同値類と商集合をわかりやすく図解~定義と具体例4つ~

集合において,同値関係の元を集めた「同値類 (equivalence class) 」と,それらを集めた集合である「商集合 (quotient set) 」は,専門数学における難しい概念の1つでしょう。これについて,具体例・図を交えて解説します。
集合と位相

同値関係の定義と重要な具体例5つ

同値関係 (equivalence relation) とは,二項関係~のうち,反射律・推移律・対称律をみたすものを言います。これについて,その定義と,重要な具体例5つを紹介しましょう。
集合と位相

半順序集合・全順序集合の定義・具体例4つとその周辺

半順序集合・全順序集合といった「順序集合」とは,集合内に順序(いわゆる大小関係)が定まった集合といえます。これらについて,その定義と具体例4つを紹介し,順序を保つ写像など,それに関連した知識も紹介します。
集合と位相

反射律・推移律・対称律・反対称律の定義と具体例7つ

二項関係 (binary relation) の性質である,反射律 (reflexive)・推移律 (transitive)・対称律 (symmetric)・反対称律 (antisymmetric) の定義と具体例7つを紹介します。
集合と位相

二項関係とは

数学における,集合上の2つの元の関係を表す「二項関係 (binary relation) 」について,その定義と具体例を解説します。
解析学(大学)その他

Completely monotone functionの定義と性質

Completely monotone function という,通常の monotone function (単調な関数) よりも性質の良い関数について紹介します。
解析学(大学)その他

Directly Riemann Integrableの定義と例

無限区間でリーマン和(区分求積)を考えることが可能である Directly Riemann Integrable (dRi) な関数について,その定義と例を紹介します。
数学の景色をフォローする
タイトルとURLをコピーしました