大学専門

数論

フェルマーの小定理とその3通りの証明

フェルマーの小定理 (Fermat's little theorem) とは,整数の剰余に関する有名な定理です。これについて,その主張と証明3通りの解説をしましょう。最後には,その一般化も紹介します。
複素関数論

複素数版のガウス積分とその導出証明

ガウス積分 (Gaussian integral) の指数部分を複素数に拡張したものについて,その形の紹介と,導出の証明を行いましょう。
解析学(大学)その他

Completely monotone functionの定義と性質

Completely monotone function という,通常の monotone function (単調な関数) よりも性質の良い関数について紹介します。
解析学(大学)その他

カントール集合の定義と性質3つの証明

カントール集合 (Cantor set) とは,フラクタルと呼ばれる図形の1つで,連続体濃度を持つにもかかわらず,ルベーグ測度が0となる集合として有名です。カントール集合について,その定義と性質3つとその証明を行いましょう。
確率論

マルコフの不等式とその証明をわかりやすく厳密に

確率変数に対する不等式P(|X|≧a) ≦ E[|X|]/aをマルコフの不等式 (Markov's inequality) といいます。これについて,分かりやすくかつ厳密に証明しましょう。最後には,一般の測度論に関するマルコフの不等式を紹介します。
解析学(大学)その他

Frullani integralとその証明

Frullani 積分 (Frullani integral) について,その主張を紹介し,それを証明します。
解析学(大学)その他

反復積分は1回の積分で表せる証明~反復積分に関するコーシーの公式~

反復積分は,1つの積分で表すことが可能です。これを,反復積分に関するコーシーの公式 (Cauchy formula for repeated integration) と言います。これについて紹介し,証明しましょう。
解析学(大学)その他

ディリクレ関数の定義と性質5つ

有理数で1,無理数で0となる有名な関数「ディリクレ関数 (Dirichlet function)」について,その定義と重要な性質5つ(いたるところ不連続,リーマン積分可能性,ルベーグ積分不可能性,cosの2重極限でかけることなど)をまとめます。
解析学(大学)その他

劣線形性をもつ関数の定義と性質

劣線形的関数 (sublinear function) の定義と具体例・性質をまとめます。
解析学(大学)その他

劣加法性を持つ関数の定義と性質

劣加法的関数 (subadditive function) ・優加法的関数 (superadditive function) の定義とその具体例,そして性質(極限挙動・連続性など)について,証明つきで解説します。
数学の景色をフォローする
タイトルとURLをコピーしました