大学専門

群・環・体

準同型写像・同型写像の定義と基本的な性質【群・環・体】

代数学における「準同型写像・同型写像」とは,代数の演算の構造を保つ写像のことを指します。とくに,同じ代数構造を持つ2つの集合に同型写像が定まれば,その2つは「同じもの」として扱うことが可能です。準同型写像・同型写像の定義・性質について,群・環・体それぞれについて分けて解説していきましょう。
群・環・体

剰余群(商群)とは~定義・具体例・性質の証明~

剰余群(商群)とは,群の剰余類の商集合に演算を入れて再び「群」と思ったものを指します。意味不明かもしれませんが,順を追って解説していきます。剰余群(商群)の定義にあたっては,well-defined の概念が非常に大事になってきますから,そこも踏まえてしっかりと理解していきましょう。
群・環・体

ラグランジュの定理とその証明・応用例【群論】

ラグランジュの定理(Lagrange's theorem)とは,有限群とその部分群の位数における基本的な定理で,有限群の分類などに非常に役に立つ定理です。ラグランジュの定理について紹介・証明し,応用例も挙げましょう。
群・環・体

剰余類と部分群の指数~定義と具体例~

群論における剰余類(左剰余類・右剰余類)と剰余集合(左剰余集合・右剰余集合)と部分群の指数の概念を,手順を追って解説していきます。少々長いですが,群論における基本的で重要な概念ですから,ゆっくりと理解していきましょう。
測度論

ほとんどいたるところ(almost everywhere, a.e.)の議論

測度論においては,ほとんどいたるところ(almost everywhere, a.e.)を用いた議論が頻繁に出てきます。 「ほとんどいたるところ」の定義と具体例について,丁寧に解説しましょう。
群・環・体

正規部分群の定義と基本的な判定方法・具体例

正規部分群 (normal subgroup) とは,gNg^{-1} ⊂ N が成立する部分群 H ⊂ G のことを言います。正規部分群の定義と準同型写像の核を用いた判定方法,具体例と大事な性質まで紹介します。
測度論

ディンキン族定理(π-λ定理)とその証明

ディンキン族定理あるいはπ-λ定理とは,測度論の深い・複雑な議論を展開するにあたって重要な定理です。本記事では,まずディンキン族定理に必要なπシステム(乗法族)とλシステム(ディンキン族)の概念について定義し,ディンキン族定理を証明します。
測度論

測度の定義と具体例4つ・性質5つを証明付きで徹底解説

測度論の基盤である「測度 (measure) 」について,その定義と具体例4つ・基本的な性質5つを順番に解説していきましょう。どれも測度論の最も基本的な概念ですから,しっかり理解していきましょう。可測空間・可測集合の概念は既知とします。
測度論

単関数とは何か~定義と可測関数の単関数近似~

(可測)単関数 (simple function) とは,値域が有限個(有限集合)である可測関数のことを指します。単関数の定義と「任意の可測関数は単関数で近似できること」の証明を解説しましょう。
測度論

可測関数とは~定義と理解しておくべき大事な性質~

可測関数(可測写像, measurable function)とは,可測空間の間に定義されるいわゆる「構造を保つ関数」のことをいい,ルベーグ積分を考えることのできる大事な関数です。可測関数の定義を行い,マスターすべき大事な性質を一気に紹介・証明しましょう。
数学の景色をフォローする
タイトルとURLをコピーしました