参考文献

本サイトの主な参考文献を列挙します。リンク先はAmazonのアフィリエイトリンクである場合があります。

なお,マイナーな文献に関しては,記事毎に参考文献を記載していますから,そちらも確認してください。

  1. 伊藤清三「ルベーグ積分入門」(裳華房 数学選書4,新装版第1版,2017)
  2. 内田伏一「集合と位相」(裳華房 数学シリーズ, 増補新装版, 2020)
  3. 奥村晴彦, 黒木裕介「LaTeX 美文書作成入門」(技術評論社, 第9版, 2023)
  4. 黒田成俊「関数解析」 (共立出版,共立数学講座15,1980)
  5. 吹田信之, 新保経彦「理工系の微分積分学」(学術図書出版社, 2023)
  6. 永田雅宜「理系のための線型代数の基礎」(紀伊國屋書店, 1986)
  7. 舟木直久「確率論」(朝倉書店 講座 数学の考え方20, 2004)
  8. 松坂和夫「集合・位相入門」 (岩波書店 数学入門シリーズ,新装版,2018)
  9. 堀田良之「代数入門-群と加群-」 (裳華房 数学シリーズ,新装版,2021)
  10. 雪江明彦「整数論1 初等整数論からp進数へ」(日本評論社,2013)
  11. 雪江明彦「代数学1 群論入門」(日本評論社,第2版,2023)
  12. 雪江明彦「代数学2 環と体とガロア理論」(日本評論社,第2版,2023)
  13. L. V. Ahlfors, Complex analysis. 3rd edition. McGraw-Hill Professional, 1979.
  14. N. L. Carothers, Real Analysis. Cambridge University Press, 2000.
  15. F. M. Dekking, et al. A modern introduction to probability and statistics. Springer, 2005.
  16. R. Engelking, General Topology, Revised and completed edition. Sigma Series in Pure Mathematics, 1989.
  17. L. C. Evans, R. F. Gariepy. Measure Theory and Fine properties of Functions. CRC Press, 1992.
  18. T. Geveci, Advanced Calculus of a single Variable. Springer, 2016.
  19. E. Hille, R. S. Phillips, Functional analysis and semi-groups. American Mathematical Society, 1957.
  20. J. L. Kelly, General Topology, Springer, 1975.
  21. A. W. Knapp, Basic Real Analysis Along with a companion volume Advanced Real Analysis. Birkhäuser Boston, Inc., Boston, MA, 2005.
  22. M. Kuczma, An introduction to the theory of functional equations and inequalities, 2nd edition. Birkhäuser Verlag, 2009.
  23. P. D. Lax, M. S. Terrell, Calculus with applications, 2nd edition. Springer, 2014.
  24. P. R. Mercer, More Calculus of a Single Variable. Springer, 2014.
  25. S. Ovchinnikov, Real Analysis: Foundations. Springer, 2021.
  26. Gert K. Pedersen, Analysis Now. Springer, 1989.
  27. C. C. Pugh, Real Mathematical Analysis, 2nd edition. Springer, 2015.
  28. W. Rudin, Real and Complex Analysis, 3rd edition. McGraw-Hill, 1987.
  29. K. A. Ross, Elementary Analysis The Theory of Calculus, 2nd edition. Springer, 2013.
  30. L. A. Steen, J. A. Seebach, Counterexamples in Topology, 2nd edition. Springer, 1978.
  31. T. Tao, Analysis I, II, 3rd edition. Springer, 2016.
  32. S. Willard, General Topology, Dover Publications, 2004.
  33. amsmath – AMS mathematical facilities for LATEX
  34. amsfonts – TEX fonts from the American Mathematical Society
  35. amsthm – Typesetting theorems (AMS style)
  36. bm – Access bold symbols in maths mode
  37. braket – Dirac bra-ket and set notations
  38. empheq – EMPHasizing EQuations
  39. enumitem – Control layout of itemize, enumerate, description
  40. esint – Extended set of integrals for Computer Modern
  41. esvect – Vector arrows
  42. geometry – Flexible and complete interface to document dimensions
  43. graphicx – Enhanced support for graphics
  44. hyperref – Extensive support for hypertext in LATEX
  45. KaTeX – The fastest math typesetting library for the web.
  46. mathcomp – Text symbols in maths mode
  47. mathtools – Mathematical tools to use with amsmath
  48. mleftright – Variants of delimiters that act as maths open/close
  49. multicol – Intermix single and multiple columns
  50. nccmath – Extended mathematics capabilities
  51. physics – Macros supporting the Mathematics of Physics
  52. stmaryrd – St Mary Road symbols for theoretical computer science
  53. Wikipedia
  54. xcolor – Driver-independent color extensions for LATEX and pdfLATEX

タイトルとURLをコピーしました