集合と位相

微分積分学(大学)

【ディニの定理】各点収束から一様収束が従う定理とその証明

連続関数の列が単調増加に連続関数へ各点収束するとき,一様収束が言える「ディニの定理 (Dini's theorem) 」と呼ばれる定理があります。本記事ではこの定理の紹介とポイント解説,最後に証明を行います。証明のみ位相空間論の知識が必要です。
微分積分学(大学)

アスコリ–アルツェラの定理とその証明~注意点を添えて~

アスコリ–アルツェラの定理(Ascoli–Arzelà theorem)は,解析学でよく使われる定理の一つですが,用語が難しく,適用条件にも注意が必要です。まず必要な用語として,「一様有界性」と「同程度連続性」の定義をし,定理を紹介します。