集合と位相 【位相空間】稠密性と可分性~定義と具体例11個~ 位相空間の部分集合が,稠密(ちゅうみつ)であるとは,閉包が全体集合に一致することを言い,可分であるとは,高々可算な稠密部分集合を持つ位相空間のことを言います。稠密の定義と可分の定義を,それぞれたくさんの具体例を添えて確認していきましょう。 2024.11.04 集合と位相
集合と位相 集積点・孤立点とは~ユークリッド空間・位相空間~ ユークリッド空間・距離空間・位相空間における集積点・孤立点の定義と具体例を図解付きで解説します。特に,ユークリッド空間・距離空間における集積点・孤立点をしっかり理解していきましょう。 2024.10.27 集合と位相
集合と位相 【位相空間】閉包とは~定義と例と性質~ ユークリッド空間・距離空間・位相空間におけるある集合の「閉包」とは,ある集合を含む最小の閉集合のことです。まずは位相空間における一般的な閉包を定義し,ユークリッド空間・距離空間におけるもっとイメージしやすい定義を述べましょう。 2024.10.15 集合と位相
集合と位相 ユークリッド空間・距離空間の開集合・閉集合とその例・性質 ユークリッド空間・距離空間における開集合・閉集合とは,ものすごく崩して言うと,R における開区間・閉区間をより一般の集合で考えたようなものです。開集合・閉集合について定義し,その例を紹介します。 2024.07.29 集合と位相
集合と位相 相対位相と部分位相空間の定義・具体例5つ・性質5つ 位相空間論における相対位相とは,位相空間の部分集合に入る位相のことです。元の位相と同じ性質を引き継ぐこともあれば,全く異なる性質を持つこともあります。相対位相・部分位相空間について,その定義と具体例・性質とその証明をしていきます。 2024.07.27 集合と位相
集合と位相 内部(開核)・外部・境界について詳しく図解~距離空間・位相空間~ 集合の内点・外点・境界点と,その集合である内部(開核)・外部・境界について,具体例を用いながら詳しく図解していきます。まず,ユークリッド空間において考えることでイメージを膨らませ,それからより一般的な距離空間や位相空間における内部(開核)・外部・境界を考えます。 2024.07.16 集合と位相
集合と位相 離散距離空間とは~定義と性質~ 離散距離空間とは,全ての点が離れているような空間です。ユークリッド空間とは全く違う空間ですが,距離空間における基本的な空間です。離散距離空間について,その定義と性質を解説しましょう。 2024.07.15 集合と位相
集合と位相 位相空間の定義と開集合・閉集合について 位相空間とは,点の近さを土台とする「収束性・写像の連続性」が議論できる抽象的な空間といえます。その定義はかなり抽象的なものですが,ユークリッド空間や距離空間でなくても,さらに一般的に広く収束・連続の概念を取り扱うことができ,大学以上の数学を深めるうえで欠かすことのできない概念です。 2024.06.26 集合と位相
記号・記法 【円・球】開円板・閉円板・円周・開球体・閉球体・球面 円の内部のみを開円板,円の内部と周を合わせて閉円板,円の周のみを円周といいます。球の内部のみを開球体,球の内部と周囲の面を合わせて閉球体,球の周囲の面のみを球面といいます。 2024.05.29 記号・記法
解析学(大学)その他 区間縮小法の原理とその証明~実数の連続性~ 区間縮小法の原理とは,単調減少な閉区間の列の幅が0に収束するならば,閉区間は最後は1点に収束するという定理です。区間縮小法の原理は,実数の連続性が深く関係しています。区間縮小法の原理について,実数の連続性を認めて証明し,逆に区間縮小法の原理から実数の連続性を導くこともできるため,それも紹介します。 2024.01.07 解析学(大学)その他