用語・記号の定義

関数解析学

正規直交系・正規直交基底

正規直交系とは,大きさが1であり,互いに直交するベクトルの集まりを指します。また,正規直交基底(完全正規直交系)とは,正規直交系で,かつ全てのベクトルがそれらを用いて表現可能なことをいいます。正規直交系・正規直交基底について,定義と具体例を見ていきましょう。
関数解析学

ヒルベルト空間とは~定義・具体例・基本的性質~

ヒルベルト空間とは,内積が定義されていて,かつ完備(敷き詰まっている)空間のことを言います。ヒルベルト空間の定義を確認し,関数解析で良く用いられる具体例と基本的性質を述べましょう。
関数解析学

バナッハ空間とは~定義と具体例5つ~

バナッハ空間 (Banach space) とは,距離空間として完備なノルム空間のことを言います。バナッハ空間について,定義を詳しく紹介し,それから具体例5つと基本的性質を述べましょう。
関数解析学

ノルムの同値性と有限次元空間のノルムは全て同値である証明

あるベクトル空間には,複数のノルムの定め方があります。しかし,それらのノルムは結局同じ「収束」を扱うことになる場合があります。このとき,ノルムは同値であるといいます。ノルムの同値性の具体的な定義と,有限次元ベクトル空間のノルムは全て同値であること,また,逆に無限次元ベクトル空間ではノルムが同値にならないことがあることを紹介します。
関数解析学

【内積空間】 内積の定義・具体例と中線定理

内積が定まったベクトル空間のことを,内積空間といいます。内積とは,2つのベクトル同士を「測る」ツールであり,内積が定まるベクトル空間は,「直交」といった概念を導入することが可能です。内積について,その定義と,具体例,さらにノルムとの関係を述べ,ノルムとの関係を扱う上で必要な中線定理についても記述しましょう。
関数解析学

ノルムとは~ノルム空間の定義と具体例~

ノルム(norm)とは,ベクトルの大きさを定める量のようなものです。ノルムを定義することで,ベクトル同士の「距離」を考えることができるようになり,収束の議論ができるようになります。ノルム・ノルム空間の定義を述べ,その簡単な具体例を紹介しましょう。
測度論

【ヴィタリ集合】ルベーグ非可測集合の存在とその証明

ヴィタリ集合(vitali set)とは,剰余群R/Qにおける各代表元の集合を指し,選択公理を仮定することで存在が認められます。ヴィタリ集合はルベーグ非可測集合の例として有名です。ヴィタリ集合について,その構成とルベーグ非可測であることの証明を行いましょう。
線形代数学

ハメル基底とは~有理数上実数の基底~

ハメル基底 (Hamel basis)とは,実数を有理数上のベクトル空間とみなしたときの基底のことを言います。ハメル基底についてその定義と濃度,関連する話題を紹介しましょう。
線形代数学

Spanの意味とは【線形結合】

Span Sとは集合Sの一次結合(線形結合)によってできるベクトル空間(線形包;linear span)を指します。これは,Sを含む最小のベクトル空間になります。Spanの定義と具体例を確認していきましょう。
群・環・体

体の定義と具体例4つ

数学,とくに代数学における体 (field) とは,四則演算が定義された集合のことを言います。一般に,代数学においては,群はかけ算・わり算が定義された集合,環は足し算・引き算・かけ算が定義された集合,体は足し算・引き算・かけ算・わり算(四則演算)が定義された集合をいいます。本記事では環の定義を前提に,体の定義と具体例を述べましょう。