大学教養

解析学(大学)その他

デデキント切断による実数の構成を解説

デデキント切断をざっくり説明すると,有理数のみの数直線を2つに切断して,その「切り口」を新たに数と思うことで,実数を定義しようというものです。これにより,有理数にはない「実数の連続性」が成り立ちます。デデキント切断について,その定義から実数の定義を紹介し,さらに実数の連続性について述べ,実数の演算を定義していきましょう。
集合と位相

【距離空間】全有界の定義・例と有界との違いをわかりやすく

距離空間あるいはその部分集合が全有界であるとは,任意に小さい有限個の円板で,その集合全体が覆えることを言います。距離空間における全有界性について,有界性との違いを比較しながらその定義・例を理解していきましょう。全有界であれば有界であることの証明も行います。
集合と位相

ツォルンの補題とその証明のスケッチ・応用例

ツォルンの補題 (Zorn's lemma) は,補題と言われていますが数学における大事な定理の1つで,選択公理と同値です。ツォルンの補題について,その主張と証明のスケッチを紹介し,さらにツォルンの補題を用いて証明される定理について述べましょう。
集合と位相

整列集合と整列可能定理

整列集合とは,「間隔を空けてきれいに順番に並んだ」集合のことで,具体的には,どんな部分集合を持ってきてもちゃんと大小関係として最小値が定まるような順序集合のことを言います。整列集合の定義と,重要な性質を証明し,さらに選択公理と同値で驚愕の定理である,整列可能定理を紹介しましょう。
集合と位相

超限帰納法とは~数学的帰納法の一般化~

超限帰納法 (transfinite induction) とは,数学的帰納法の議論をより一般の整列集合に適用したものです。超限帰納法について,その内容を紹介しましょう。
集合と位相

ベルンシュタインの定理とその証明【双方単射があれば全単射がある】

ベルンシュタインの定理(Schröder–Bernstein theorem)とは,2つの集合それぞれを定義域・終域とする双方向の単射があれば,全単射があるという定理です。ベルンシュタインの定理について,イメージ図を交えて証明していきましょう。
数論

ピタゴラス数の求め方(解)・性質とその証明

a^2+b^2=c^2をみたすような正の整数(a,b,c)をピタゴラス数といいます。特に,3数の最大公約数が1であるピタゴラス数(a,b,c)を原始ピタゴラス数といいます。原始ピタゴラス数は求め方があります。これについて掘り下げましょう。
解析学(大学)その他

リプシッツ連続とは~定義と性質・他の連続性との関係など~

関数fがリプシッツ連続(Lipschitz continuous)であるとは,|f(x)-f(y)| ≦ K|x-y| が成り立つことを指します。リプシッツ連続について,その定義と例,一様連続など他の連続性との関係,微分と関連する性質について述べましょう。
群・環・体

モニック多項式とは~定義・例・性質~

モニック多項式 (monic polynomial) とは,最高次係数が1である一変数多項式のことを言います。モニック多項式について,簡単に定義・例・性質を紹介しましょう。
群・環・体

同次式(斉次式)とは

同次式(どうじしき)あるいは斉次式(せいじしき; homogeneous polynomial)とは,(多変数)多項式において,全ての項の次数が等しいようなものを言います。同次式(斉次式)について,定義と具体例,性質をまとめます。