大学教養

線形代数学

エルミート行列の定義と性質4つとその証明

エルミート行列 (Hermitian matrix) とは,随伴行列(共役転置)と元の行列が等しい正方行列を指します。これについて,定義・具体例と性質を証明付きで紹介しましょう。
線形代数学

対称行列の定義と性質4つとその証明

対称行列 (symmetric matrix) とは,自身とその転置行列が同じである行列を指します。対称行列の定義・性質4つを紹介しましょう。
線形代数学

数ベクトルの定義と数ベクトルにおけるノルム・内積

数ベクトルとは,ざっくりいうと数を並べたものです。数を並べたものを「ベクトル」という一つのかたまりとして扱うことで,いろいろ便利なことがあるわけです。今回は,「便利なこと」の紹介はしませんが,数ベクトルとは何かの定義とノルム・内積といった大切な概念を一気に解説しましょう。
線形代数学

正規行列とは~定義・性質6つとその証明~

正規行列 (normal matrix) とは,AA^*=A^*Aが成り立つ正方行列を指します。ただし,Aの随伴行列(共役転置)です。これについて,その定義・具体例・性質を証明付きで紹介しましょう。
線形代数学

【行列の三角化】正方行列は三角行列と相似であることの証明

任意の正方行列は,上三角行列と相似であることが知られています。これの証明を詳しく解説しましょう。
線形代数学

ユニタリ行列の定義と性質10個とその証明

ユニタリ行列 (unitary matrix) とは,UU^* =U^*U= I_nとなる正方行列 U を指します。これについて,定義と性質とその証明を行いましょう。
線形代数学

直交行列の定義と性質10個とその証明

直交行列 (orthogonal matrix) とは,A A^T =A^T A = I_n となる正方行列 A を指します。これについて,定義と性質10個とその証明を行いましょう。
数論

オイラー関数の定義・性質4つとその証明

オイラー関数,あるいはオイラーのファイ関数・オイラーのトーシェント関数とは,1,2,3,..., n-1のうち,nと互いに素なものの個数を指します。これについて,その定義・性質を述べ,証明していきましょう。
記号・記法

二項演算・単項演算とは

二項演算 (binary operation)・単項演算 (unary operation) は,厳密には集合上の写像として定義されます。これについて,その定義と例を紹介しましょう。
解析学(大学)その他

凸包とは何か~定義と具体例と性質~

集合Aの凸包 (convex hull) とは,Aを含む最小の凸集合を指します。これについて,定義と具体例と性質を述べましょう。
タイトルとURLをコピーしました