解析学(大学)

統計学

四分位数・四分位範囲・四分位偏差をわかりやすく図解

データを昇順に並べ,4等分したときの境界にあたる3つの数を「四分位数」といい,この3つの数のうち一番大きいものから一番小さいものを引いたのを「四分位範囲」,四分位範囲を2で割ったものを「四分位偏差」といいます。四分位数・四分位範囲・四分位偏差について,図を交えて解説しましょう。
統計学

データの平均値・中央値・最頻値の定義と解釈

数量データにおける平均値(average mean)・中央値(median)・最頻値(mode)の定義と,その意味を具体例を含めて解説し,さらに棒グラフとの関係,ヒストグラムとの関係を紹介します。
統計学

ヒストグラムとは~定義の図解と度数折れ線を添えて~

ヒストグラムとは,度数分布表を柱状のグラフで表したものです。度数分布図とも言います。ヒストグラムについて,定義と具体例,棒グラフとの違いも解説します。なお,最後には「度数折れ線」というのも紹介します。
統計学

度数分布表とは~定義と関連用語をまとめて図解~

統計学における,データをまとめる手法として「度数分布表」と,その関連用語を図を使って紹介しましょう。データをある範囲ごとに区切って,その範囲に属する数の散らばりの様子を度数分布 (frequency distribution) といい,それを表にしたものを度数分布表 (frequency table) という。
測度論

ほとんどいたるところ(almost everywhere, a.e.)の議論

測度論においては,ほとんどいたるところ(almost everywhere, a.e.)を用いた議論が頻繁に出てきます。 「ほとんどいたるところ」の定義と具体例について,丁寧に解説しましょう。
測度論

ディンキン族定理(π-λ定理)とその証明

ディンキン族定理あるいはπ-λ定理とは,測度論の深い・複雑な議論を展開するにあたって重要な定理です。本記事では,まずディンキン族定理に必要なπシステム(乗法族)とλシステム(ディンキン族)の概念について定義し,ディンキン族定理を証明します。
測度論

測度の定義と具体例4つ・性質5つを証明付きで徹底解説

測度論の基盤である「測度 (measure) 」について,その定義と具体例4つ・基本的な性質5つを順番に解説していきましょう。どれも測度論の最も基本的な概念ですから,しっかり理解していきましょう。可測空間・可測集合の概念は既知とします。
統計学

コサイン類似度とは~定義と具体例~

コサイン類似度 (cosine similarity) とは,ベクトルの向きの類似度を測る指標で,内積を用いて定義されます。コサイン類似度の定義と,2次元の場合の具体例を述べましょう。
測度論

単関数とは何か~定義と可測関数の単関数近似~

(可測)単関数 (simple function) とは,値域が有限個(有限集合)である可測関数のことを指します。単関数の定義と「任意の可測関数は単関数で近似できること」の証明を解説しましょう。
測度論

可測関数とは~定義と理解しておくべき大事な性質~

可測関数(可測写像, measurable function)とは,可測空間の間に定義されるいわゆる「構造を保つ関数」のことをいい,ルベーグ積分を考えることのできる大事な関数です。可測関数の定義を行い,マスターすべき大事な性質を一気に紹介・証明しましょう。