数論

フェルマーの小定理とその3通りの証明

フェルマーの小定理 (Fermat's little theorem) とは,整数の剰余に関する有名な定理です。これについて,その主張と証明3通りの解説をしましょう。最後には,その一般化も紹介します。
数論

超越数・代数的数とは~定義・例と基本的な性質~

「代数的数 (algebraic number)」とは,有理数係数の(多項式)= 0 の解になり得る複素数を指し,「超越数 (transcendental number)」とは,そうでない複素数を指します。これについて,定義・例と基本的な性質を紹介します。
統計学

ベイズの定理をわかりやすく簡潔に

ベイズの定理 (Bayes' theorem) とは,条件付き確率に関する等式を指します。これについて,その証明と,意義も含めた応用例を紹介しましょう。
集合と位相

完備とは~実数の完備性・距離空間の完備性~

数学において,完備 (complete) であるとは,コーシー列が常に収束することを指します。これについて,「実数における完備性」と「距離空間における完備性」を分けて解説しましょう。
複素関数論

フレネル積分(sin(x^2)の積分)とその導出証明

フレネル積分 (Fresnel integral) は,sin(x^2), cos(x^2) の積分を指します。これについて,その公式と,複素関数論でよく用いられる経路積分を用いた詳しい証明を紹介しましょう。
複素関数論

複素数版のガウス積分とその導出証明

ガウス積分 (Gaussian integral) の指数部分を複素数に拡張したものについて,その形の紹介と,導出の証明を行いましょう。
微分積分学(大学)

ガウス積分のさまざまな形とその証明5つ

ガウス関数e^-x^2の積分であるガウス積分 (Gaussian integral) について,そのさまざまな形を紹介し,5通りの証明を紹介します。証明は,極座標変換・直交座標変換・ガンマ関数・ウォリス積分・回転体の体積を用いたものを順に紹介します。
微分積分学(大学)

重積分の変数変換の方法とその例題~極座標変換の解説付き~

重積分の変数変換の方法と,その例題を2つ紹介します。まずは2重積分の場合を考え,それから一般の多重積分の場合について述べます。例題は,一次変換の場合と,極座標変換の場合を扱います。
微分積分学(大学)

包絡線とは~定義と求め方と例題4つ~

「包絡線 (envelope) 」とは,曲線族全てに接しているような曲線のことを言います。これについて,その厳密な定義と,求め方の例題を解説しましょう。
複素関数論

コーシーリーマンの関係式とそのわかりやすい証明

複素関数論におけるコーシーリーマンの関係式 (Cauchy-Riemann equation)について,その定理の主張と証明を紹介しましょう。