大学教養

微分積分学(大学)

閉区間上各点収束列が同程度連続ならば一様収束することの証明

関数列が各点収束するとき,同程度連続であれば,それが一様収束であるという定理を紹介し,証明します。 \{f_n\colon [0, 1] \to \mathbb{R} を同程度連続な関数列とし,f \colon [0, 1] \to \mathbb{R}に各点収束するなら,この収束は一様収束である。
集合と位相

写像の像・逆像と集合との演算証明

像・逆像と集合との演算とその証明をします。f(A_1 \cup A_2) = f(A_1) \cup f(A_2), f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2), f^{-1} (B_1 \cup B_2) = f^{-1} (B_1) \cup f^{-1}(B_2), f^{-1} (B_1 \cap B_2) = f^{-1} (B_1) \cap f^{-1}(B_2)
記号・記法

写像の像・逆像の定義と具体例をわかりやすく

写像(関数)における像 (値域, image, range)・逆像 (原像, inverse image, preimage) を定義し,そのイメージ図と具体例を確認していきましょう。
記号・記法

関数(写像)の「グラフ」とは何かを厳密に定義しよう

関数の「グラフ (graph)」というと, xy 平面上の「図」を思い浮かべる人も多いのではないでしょうか。実際,一般の関数において,関数の「グラフ」とはどう定義されるかについて紹介します。
記号・記法

合成関数(合成写像)の定義と性質~注意点を添えて~

関数(写像)の合成 (composite function) について,定義・具体例・注意点・性質の順に解説します。性質については,結合法則の他,合成関数が全射や単射となるのはどういうときかについての紹介とその証明をします。
記号・記法

逆関数(逆写像)の定義と性質を厳密に~図解付き~

逆関数(逆写像)の定義と性質について図を交えつつ厳密に説明します。逆関数を厳密に定義するためには,「全単射」という概念が必要です。これについては長くなってしまうため,別の記事で解説していますから,以下を参照してください。
記号・記法

恒等写像(id),包含写像とは何か

恒等写像 (identity map, identity function) と包含写像 (including map, including function) の定義と性質を説明します。
記号・記法

全射・単射・全単射の定義をわかりやすく~具体例を添えて~

全射 (surjection) 単射 (injection) 全単射 (bijection) の定義とそのイメージを理解し,使いこなせるようにしましょう。
記号・記法

関数とは何か,写像とは何かを図解~定義と表記法と具体例~

関数(写像)とは,入力を与えるとある特定の出力を一つ返すものである。これが,「関数(写像)とは何か」という問いの最も簡単な答えです。これについて,数学的に正しく理解しましょう。関数・写像の定義と表記法,そして関数・写像の違いはあるのかどうかについて述べます。
微分積分学(大学)

中間値の定理とは~主張・証明と何が本質なのかを解説~

中間値の定理とは,「連続関数なら,間の値を全て取る」という一見当たり前の定理です。これについて,その主張と,その証明を紹介します。さらに,根底にある「当たり前の性質」が何なのかも考えましょう。最後に位相空間論の言葉を用いた主張も述べます。