解析学(大学)その他 凸包とは何か~定義と具体例と性質~ 集合Aの凸包 (convex hull) とは,Aを含む最小の凸集合を指します。これについて,定義と具体例と性質を述べましょう。 2021.11.04 解析学(大学)その他
解析学(大学)その他 凸集合とは何かをわかりやすく~定義と性質~ 凸集合 (convex set) とは簡単に言うと「へっこんでいない集合」のことをいいます。これについて,ちゃんとした定義と,性質を解説します。 2021.11.03 解析学(大学)その他
解析学(大学)その他 Completely monotone functionの定義と性質 Completely monotone function という,通常の monotone function (単調な関数) よりも性質の良い関数について紹介します。 2021.09.17 解析学(大学)その他
解析学(大学)その他 Directly Riemann Integrableの定義と例 無限区間でリーマン和(区分求積)を考えることが可能である Directly Riemann Integrable (dRi) な関数について,その定義と例を紹介します。 2021.09.16 解析学(大学)その他
解析学(大学)その他 カントール集合の定義と性質3つの証明 カントール集合 (Cantor set) とは,フラクタルと呼ばれる図形の1つで,連続体濃度を持つにもかかわらず,ルベーグ測度が0となる集合として有名です。カントール集合について,その定義と性質3つとその証明を行いましょう。 2021.09.04 解析学(大学)その他
解析学(大学)その他 Frullani integralとその証明 Frullani 積分 (Frullani integral) について,その主張を紹介し,それを証明します。 2021.06.07 解析学(大学)その他
解析学(大学)その他 反復積分は1回の積分で表せる証明~反復積分に関するコーシーの公式~ 反復積分は,1つの積分で表すことが可能です。これを,反復積分に関するコーシーの公式 (Cauchy formula for repeated integration) と言います。これについて紹介し,証明しましょう。 2021.06.06 解析学(大学)その他
解析学(大学)その他 【トマエ関数】無理数で連続,有理数で不連続な関数 有理数で分母分の1,無理数で0となる関数をトマエ関数 (Thomae function) と言います。この関数について,その定義と性質2つ(無理数で連続,有理数で不連続,リーマン積分可能性)を紹介しましょう。 2021.05.26 解析学(大学)その他
解析学(大学)その他 ディリクレ関数の定義と性質5つ 有理数で1,無理数で0となる有名な関数「ディリクレ関数 (Dirichlet function)」について,その定義と重要な性質5つ(いたるところ不連続,リーマン積分可能性,ルベーグ積分不可能性,cosの2重極限でかけることなど)をまとめます。 2021.05.24 解析学(大学)その他