微分積分学(大学)

【スターリングの公式】階乗n!の近似公式とその厳密な証明

n!の近似公式であるスターリングの公式 (Stirling's formula) について,その主張と厳密な証明を紹介します。n!~√2π(n/e)^nである。ここで,f~gとは,f(x)/g(x) → 1 (x→1) を指す。
微分積分学(大学)

ウォリスの公式3つとその証明

ウォリスの公式 (Wallis formula,ワリスの公式) と呼ばれる公式を3つの形で紹介し,それらの公式を証明します。円周率πが登場するきれいな公式の1つです。
微分積分学(大学)

【ウォリス積分】sin,cosのn乗積分の導出と性質

ウォリス積分,またはワリス積分 (Wallis integral) と呼ばれる積分\int_0^{\pi/2} \sin^n x dx, \int_0^{\pi/2} \cos^n x dx について紹介しましょう。証明は理系高校生でも理解できるものです。
線形代数学

行列単位とは~定義と性質~

行列単位 E_{ij} (matrix unit) とは,(i,j) 成分のみが1で,それ以外の成分が0となる行列を指します。これについて,その定義と積に関する性質3つを紹介します。
線形代数学

行列のトレース(tr)とは~定義と性質とその証明~

正方行列に対して定義されるトレース(trace, 跡)とは,対角成分の和を指します。これについて,定義を図を交えて整理し,さらにその性質(線形性・可換,相似不変性・固有値との関係・可換性のある線形汎関数は固有値に限る)を証明しましょう。
微分積分学(大学)

log(1+x)の0でのテイラー展開(マクローリン展開)

log(1+x)の0でのテイラー展開,すなわちマクローリン展開について,その厳密な導出と収束半径・収束する範囲についてわかりやすく丁寧に紹介します。最後には交代調和級数の話題や複素数のlog(1+z)についての議論も行います。
微分積分学(大学)

ロピタルの定理を誤りなく使おう~具体例6つと証明~

ロピタルの定理(l'Hôpital's rule)と言えば,適用条件が難しく,使うときは注意せよといわれる定理の1つでしょう。今回はロピタルの定理について,その主張と成り立つ・成り立たない例を確認し,そして最後に証明を述べることにしましょう。
微分積分学(大学)

【べき級数】収束半径の定義と求め方とその具体例3つ

べき級数の収束半径 (radius of convergence) について,その定義とダランベールの公式・コーシーアダマールの公式を用いた求め方,そしてその具体例3つについて,順番に考えていきましょう。
LaTeX

【LaTeX】雑記号・特殊文字のコマンド98個一覧

数式中・テキスト中における雑記号・特殊文字のコマンドを紹介します。なお一部,amsmath, amssymb, amsfonts, latexsym パッケージの使用を仮定しています。コンパイルエラーが出る場合は,これらのパッケージを追加してみてください。
微分積分学(大学)

三角関数sin,cosのマクローリン展開(0でのテイラー展開)

サイン・コサインの0でのテイラー展開,すなわちマクローリン展開について,その導出を考えます。具体的な導出については,まずマクローリン展開の復習をし,それから形式的な導出・ちゃんとした導出・オイラーの公式を用いた理解を順番に行います。収束半径についても確認します。