測度論 σ加法族と可測空間の定義・基本的な性質をわかりやすく 解析学,特に測度論やルベーグ積分と呼ばれる分野における最も基本的な概念である,「σ-加法族 (σ-field) 」「可測空間 (measurable space)」の定義とその基本的な性質について,丁寧に紹介していきましょう。 2021.12.10 測度論
線形代数学 正定値行列・半正定値行列の定義・性質3つとその証明 正定値行列 (positive definite matrix) とは内積について <Ax, x>>0が成り立つ行列で,半正定値行列とは,<Ax, x>≧0 が成り立つ行列です。正定値行列・半正定値行列について,その定義と性質を紹介しましょう。 2021.12.07 線形代数学
線形代数学 グラム行列の定義と主な性質3つ グラム行列 (Gram matrix) とは,(i, j)成分がベクトルx_i,x_jの内積になる行列のことです。これについて,定義と性質を証明付きで解説しましょう。 2021.12.05 線形代数学
群・環・体 直交群・回転群(特殊直交群)とは~定義と性質~ 直交群・回転群(特殊直交群)とは,それぞれ直交行列・回転行列の集合のなす群を言います。これについて,定義と性質を述べましょう。 2021.12.02 群・環・体
線形代数学 スカラー行列とは~定義と大事な性質~ スカラー行列 (scalar matrix) とは,単位行列を用いて A=aI_n のように書ける行列のことで,まるでスカラーのように扱える行列を指します。これについて,定義と大事な性質を1つ紹介しましょう。 2021.11.30 線形代数学
数論 平方剰余・平方非剰余とルジャンドル記号 合同式における平方剰余(quadratic residue)・平方非剰余(quadratic nonresidue)の概念と,それを扱うのに便利なルジャンドル記号(Legendre symbol)の定義・性質について,順を追って解説していきましょう。 2021.11.27 数論
線形代数学 行列の固有多項式・最小多項式の定義・求め方・性質 正方行列における,固有多項式 (characteristic polynomial)・最小多項式 (minimal polynomial) について,その定義と求め方,性質を順番に解説していきましょう。 2021.11.25 線形代数学
線形代数学 歪エルミート行列の定義と重要な性質5つ 歪エルミート行列(わいえるみーとぎょうれつ,反エルミート行列)とは,随伴行列(共役転置)をとると元の行列の-1倍になるような行列を指します。すなわち,A^*=-Aですね。これについて,その定義と性質を解説しましょう。 2021.11.21 線形代数学
線形代数学 交代行列の定義と重要な性質5つ 交代行列 (反対称行列,歪対称行列,alternating matrix) とは,転置行列が元の行列の-1倍になる行列,すなわちA^T =-Aをみたす行列を指します。 2021.11.20 線形代数学
線形代数学 エルミート行列の定義と性質4つとその証明 エルミート行列 (Hermitian matrix) とは,随伴行列(共役転置)と元の行列が等しい正方行列を指します。これについて,定義・具体例と性質を証明付きで紹介しましょう。 2021.11.19 線形代数学