解析学(大学)その他 凸関数と凸不等式(イェンセンの不等式)についてかなり詳しく 凸関数 (convex function) は,それ自身が研究対象の一つであり,凸解析 (convex analysis) といわれることがあります。凸関数・凹関数と凸不等式(イェンセンの不等式)について,基本的なことを詳しくまとめましょう。 2023.05.03 解析学(大学)その他
群・環・体 同次式(斉次式)とは 同次式(どうじしき)あるいは斉次式(せいじしき; homogeneous polynomial)とは,(多変数)多項式において,全ての項の次数が等しいようなものを言います。同次式(斉次式)について,定義と具体例,性質をまとめます。 2023.03.06 群・環・体
統計学 偏差値とは何かとその数値の目安 よく,テストで点数と一緒に「偏差値 (T-score)」という数値が載っていることがあるでしょう。偏差値とは,母集団の相対的なランクを表すツールで,模試の成績によく用いられます。偏差値について,その定義と,大体の数値の目安,偏差値のよくある勘違いを紹介します。 2023.01.19 統計学
数論 【n!がpで割れる回数】ルジャンドルの定理とその証明 ルジャンドルの定理,あるいはルジャンドルの公式(Legendre's formula)とは,n!が素数がpで何回割れるかを表したものです。これについて,定理の主張と証明を行いましょう。 2022.06.09 数論
数論 完全数の定義と性質とその証明 完全数 (perfect number) とは,自分以外の正の約数の総和が自分自身に一致する数のことです。たとえば,28=1+2+4+7+14は完全数です。完全数について,その定義とメルセンヌ素数を絡めた性質を紹介しましょう。 2021.12.18 数論
数論 メルセンヌ数・メルセンヌ素数とは~定義と性質~ メルセンヌ数 (Mersenne number) とは,2^n-1と表せる数で,これが素数のときはメルセンヌ素数 (Mersenne prime) といいます。これについて,定義と性質を解説しましょう。 2021.12.15 数論
数論 【(p-1)!≡-1】ウィルソンの定理とその4通りの証明 数論(整数論)におけるウィルソンの定理 (Wilson's theorem) とは (p-1)!≡-1 (mod p) のことを言います。これについて,定理の内容と証明3通りをわかりやすく紹介しましょう。 2021.10.24 数論
数論 【数論】オイラーの定理とその2通りの証明 数論(整数論)において,フェルマーの小定理の一般化であるオイラーの定理 (Euler's theorem) について,その定理の主張と証明を解説しましょう。 2021.10.19 数論
数論 フェルマーの小定理とその3通りの証明 フェルマーの小定理 (Fermat's little theorem) とは,整数の剰余に関する有名な定理です。これについて,その主張と証明3通りの解説をしましょう。最後には,その一般化も紹介します。 2021.10.18 数論
微分積分学(大学) 【数列など】部分列とは何か~定義と応用例~ 数列(あるいは関数列・点列など)における「部分列 (subsequence) 」とは何かをイメージ図付きでわかりやすく簡潔に解説し,部分列に関連するテーマをいくつか紹介します。 2021.04.02 微分積分学(大学)