線形代数学 上三角行列・下三角行列の定義と性質6つ 正方行列における,上三角行列 (あるいは右三角行列)・下三角行列 (あるいは左三角行列)・三角行列 (triangular matrix) の定義と,その性質6つを紹介します。 2021.04.12 線形代数学
線形代数学 部分ベクトル空間の基底の延長により全体空間の基底が取れる証明 線形代数学,特にベクトル空間とその部分空間における「基底の延長定理」を紹介し,証明します。Vを有限次元ベクトル空間とし,Wをその部分空間とする。このときWの任意の基底に対して,その基底に元を付け加えることで,Vの基底にできる。 2021.04.11 線形代数学
線形代数学 ベクトル空間の和・直和の定義とその次元の等式の証明 ベクトル空間の和・直和についての定義と,次元に関する等式dim(V+W) = dim V + dim W - dim(V\cap W)の証明を行います。これは,基底を考えることで証明できます。最後には,3つ以上の和・直和について考えます。 2021.04.10 線形代数学
線形代数学 対角行列の定義と基本的な性質6つ 正方行列において,(左上から右下への)対角成分以外が0となる行列を対角行列 (diagonal matrix) といいます。これについてのちゃんとした定義と,性質6つを述べましょう。対角成分の定義も述べます。 2021.04.06 線形代数学
線形代数学 サラスの公式で3次の行列式を求める方法を図解 「サラスの公式」または「サラスの方法 (Sarrus' rule) 」とは,3次正方行列の行列式(det)を求める記憶術を指します。これがどういうものか,図解を交えて解説しましょう。 2021.04.05 線形代数学
微分積分学(大学) 有界とは何か~有界数列(点列)・有界関数・有界集合(区間)~ 数学における有界 (bounded) とは,簡単に言うと無限遠に飛んでいかないということです。特に,有界数列(点列)・有界関数・有界集合(区間)の3つについて,その定義を,イメージ図を添えて解説します。最後には,有界に関する話題も列挙します。 2021.04.04 微分積分学(大学)
微分積分学(大学) 上に有界な単調増加数列は収束することの証明 「上に有界な単調増加数列」あるいは「下に有界な単調減少数列」は収束するという定理は,高校数学で証明なしに用いた定理の1つでしょう。これは,実数の連続性と数列の極限を厳密に定義するε-N論法を用いて証明されます。これについて証明しましょう。 2021.04.03 微分積分学(大学)
微分積分学(大学) 【数列など】部分列とは何か~定義と応用例~ 数列(あるいは関数列・点列など)における「部分列 (subsequence) 」とは何かをイメージ図付きでわかりやすく簡潔に解説し,部分列に関連するテーマをいくつか紹介します。 2021.04.02 微分積分学(大学)
微分積分学(大学) 【微分積分学】コーシー列とは~定義と収束性の証明~ コーシー列(Cauchy sequence, 基本列)は,収束値は分からないが収束することが分かる,収束判定の道具といえます。これについて定義と,コーシー列であることと収束列であることが同値であるという定理の証明を行います。否定の紹介もします。 2021.04.01 微分積分学(大学)
微分積分学(大学) 極限の性質6つの証明(一意性,和,積,商,大小関係) 極限の基本的な性質(極限の一意性・和の保存・積の保存・商の保存・大小関係の保存)について証明します。イプシロンエヌ・イプシロンデルタ論法の演習問題としても最適なので,しっかり確認していきましょう。 2021.03.31 微分積分学(大学)