数論 ピタゴラス数一覧【10000以下全て1593個】 a^2+b^2=c^2をみたす整数の組(a,b,c)をピタゴラス数 (Pythagorean triple) といい,特にa,b,cの3数の最大公約数が1であるものを 原始ピタゴラス数 (primitive Pythagorean triple) といいます。今回は,以下のルールに従い,ピタゴラス数をひたすら列挙します。 2023.07.18 数論
数論 ピタゴラス数の求め方(解)・性質とその証明 a^2+b^2=c^2をみたすような正の整数(a,b,c)をピタゴラス数といいます。特に,3数の最大公約数が1であるピタゴラス数(a,b,c)を原始ピタゴラス数といいます。原始ピタゴラス数は求め方があります。これについて掘り下げましょう。 2023.07.17 数論
群・環・体 モニック多項式とは~定義・例・性質~ モニック多項式 (monic polynomial) とは,最高次係数が1である一変数多項式のことを言います。モニック多項式について,簡単に定義・例・性質を紹介しましょう。 2023.05.04 群・環・体
群・環・体 同次式(斉次式)とは 同次式(どうじしき)あるいは斉次式(せいじしき; homogeneous polynomial)とは,(多変数)多項式において,全ての項の次数が等しいようなものを言います。同次式(斉次式)について,定義と具体例,性質をまとめます。 2023.03.06 群・環・体
線形代数学 ハメル基底とは~有理数上実数の基底~ ハメル基底 (Hamel basis)とは,実数を有理数上のベクトル空間とみなしたときの基底のことを言います。ハメル基底についてその定義と濃度,関連する話題を紹介しましょう。 2022.07.19 線形代数学
線形代数学 ベクトル空間には必ず基底が存在する証明~選択公理から~ 任意のベクトル空間には,必ず基底が存在することを証明します。証明には,選択公理と同値なツォルンの補題を用います。 2022.07.18 線形代数学
線形代数学 Spanの意味とは【線形結合】 Span Sとは集合Sの一次結合(線形結合)によってできるベクトル空間(線形包;linear span)を指します。これは,Sを含む最小のベクトル空間になります。Spanの定義と具体例を確認していきましょう。 2022.06.27 線形代数学
群・環・体 体の定義と具体例4つ 数学,とくに代数学における体 (field) とは,四則演算が定義された集合のことを言います。一般に,代数学においては,群はかけ算・わり算が定義された集合,環は足し算・引き算・かけ算が定義された集合,体は足し算・引き算・かけ算・わり算(四則演算)が定義された集合をいいます。本記事では環の定義を前提に,体の定義と具体例を述べましょう。 2022.06.13 群・環・体
数論 【n!がpで割れる回数】ルジャンドルの定理とその証明 ルジャンドルの定理,あるいはルジャンドルの公式(Legendre's formula)とは,n!が素数がpで何回割れるかを表したものです。これについて,定理の主張と証明を行いましょう。 2022.06.09 数論
線形代数学 二次形式とその行列表示 二次形式 (quadratic form) とは,2次の項しかない1変数または多変数多項式のことをいいます。二次形式について,その定義と,行列を用いた表し方を解説しましょう。 2022.04.11 線形代数学