解析学(大学)

確率論

マルコフの不等式とその証明をわかりやすく厳密に

確率変数に対する不等式P(|X|≧a) ≦ E[|X|]/aをマルコフの不等式 (Markov's inequality) といいます。これについて,分かりやすくかつ厳密に証明しましょう。最後には,一般の測度論に関するマルコフの不等式を紹介します。
確率論

正規分布の標準化とその証明

X ~ N(μ, σ^2)のとき,Z = (X-μ)/σ とスケール変換すると,Z ~ N(0,1)になります。これを,正規分布の標準化 (standardization) といいます。これについて,詳しく述べ,証明しましょう。
確率論

正規分布の歪度・尖度とその導出証明

正規分布の歪度(わいど, skewness)・尖度(せんど, kurtosis)は,両方とも0になります。これについて,その導出の証明を行いましょう。
確率論

正規分布の再生性とその詳しい証明

正規分布の再生性 (reproductive property) について,和の再生性と定数倍の再生性に分けて,それぞれを確率密度関数や特性関数を用いて証明しましょう。
確率論

正規分布の期待値(平均)・分散・標準偏差とその導出証明

正規分布の期待値(平均)・分散・標準偏差について,その導出の証明を行います。「定義から直接証明する方法」と「特性関数の微分を用いた方法」の2通りで証明しましょう。
確率論

正規分布の積率母関数(モーメント母関数)・特性関数とその導出証明

正規分布の積率母関数(モーメント母関数)・特性関数について,その導出の証明を行いましょう。
確率論

正規分布の定義と性質まとめ

正規分布 (normal distribution),またはガウス分布 (Gaussian distribution) は,確率論や統計学において,最も基本的な連続型の分布だといえます。この分布について,定義と性質を分かりやすくまとめることにしましょう。
確率論

ポアソン分布の再生性とその2通りの証明

ポアソン分布には,「再生性 (reproductive property)」と呼ばれる性質があります。この性質について,その証明を,「定義から直接証明」「特性関数を用いた証明」の2通りで行いましょう。
確率論

ポアソン分布の期待値(平均)・分散・標準偏差とその導出証明

ポアソン分布の期待値(平均)・分散・標準偏差はそれぞれλ, λ, √λ になります。これについて,その導出証明を「定義から直接証明」「特性関数の微分を用いた証明」の2通りで行いましょう。
確率論

ポアソン分布の積率母関数(モーメント母関数)・特性関数の導出証明

ポアソン分布の積率母関数(モーメント母関数)と特性関数について,その導出の証明を行いましょう。