確率論

確率論

幾何分布のモーメント母関数・特性関数とその導出証明

幾何分布は,コインで初めて表が出る試行回数を表す離散型確率分布です。これについて,そのモーメント母関数(積率母関数)・特性関数の紹介と,その導出の証明を行いましょう。
確率論

幾何分布の定義と性質まとめ

幾何分布 (geometric distribution) とは,確率pで表が出るコインを何回も投げたときに,初めて表が出るのは何回目になるかの分布を表す,離散型確率変数です。これについて,その定義と性質を掘り下げていきましょう。
確率論

指数分布の無記憶性とその証明

指数分布において,無記憶性 (lack of memory property, memorylessness) と呼ばれる性質について解説し,「指数分布が無記憶性をもつこと」と「連続型確率分布が無記憶性をもつ場合,それは指数分布に限る」ことの2つを証明しましょう。
確率論

指数分布の期待値(平均)・分散・標準偏差とその導出証明

指数分布とは,確率密度関数が指数関数である確率分布です。この確率分布の,期待値(平均)・分散・標準偏差についてその導出の証明を「定義を直接使った証明」「特性関数の微分を用いた証明」の2通りで証明しましょう。
確率論

指数分布の積率母関数・特性関数とその導出証明

指数分布について,それの積率母関数(モーメント母関数)・特性関数について紹介し,それらの導出の証明を行いましょう
確率論

指数分布の定義と例と性質まとめ

指数分布 (exponential distribution) は,確率が指数関数を用いて表現される,「無記憶性」をもつ唯一の連続型確率分布です。これについて,その定義と具体例,性質を図を交えてまとめて紹介しましょう。
確率論

二項分布の歪度・尖度とその導出証明

二項分布の歪度(わいど, skewness)・尖度(せんど, kurtosis)について,その結果と,導出の証明を行いましょう。導出のために,特性関数を用いて,二項分布の1~4次モーメントも求めます。
確率論

二項分布の期待値(平均)・分散・標準偏差とその導出証明

有名な確率分布の1つである,「二項分布 (binomial distribution)」について,その期待値(平均)E[X}・分散V(X)・標準偏差を述べ,その証明を,「定義から直接証明」「ベルヌーイ分布の和を用いた証明」「特性関数の微分を用いた証明」の3通りで行います。
確率論

二項分布の定義と性質まとめ

二項分布 (Binomial distribution) は,n回コイン投げを行ったときに,k回表が出る確率を一般化したものと言えます。そんな二項分布について,その定義と性質(積率母関数・特性関数など)を図解を交えて分かりやすくまとめます。
確率論

ベルヌーイ分布とは~定義と性質の導出~

ベルヌーイ分布 (Bernoulli distribution) は,ある確率pで1を,残りの確率1-pで0となるような確率分布のことです。これについて,その定義と性質(平均・分散・標準偏差・積率母関数・特性関数など)を述べましょう。
タイトルとURLをコピーしました