微分積分学(大学)

上に有界な単調増加数列は収束することの証明

「上に有界な単調増加数列」あるいは「下に有界な単調減少数列」は収束するという定理は,高校数学で証明なしに用いた定理の1つでしょう。これは,実数の連続性と数列の極限を厳密に定義するε-N論法を用いて証明されます。これについて証明しましょう。
微分積分学(大学)

【数列など】部分列とは何か~定義と応用例~

数列(あるいは関数列・点列など)における「部分列 (subsequence) 」とは何かをイメージ図付きでわかりやすく簡潔に解説し,部分列に関連するテーマをいくつか紹介します。
微分積分学(大学)

【微分積分学】コーシー列とは~定義と収束性の証明~

コーシー列(Cauchy sequence, 基本列)は,収束値は分からないが収束することが分かる,収束判定の道具といえます。これについて定義と,コーシー列であることと収束列であることが同値であるという定理の証明を行います。否定の紹介もします。
微分積分学(大学)

極限の性質6つの証明(一意性,和,積,商,大小関係)

極限の基本的な性質(極限の一意性・和の保存・積の保存・商の保存・大小関係の保存)について証明します。イプシロンエヌ・イプシロンデルタ論法の演習問題としても最適なので,しっかり確認していきましょう。
微分積分学(大学)

追い出しの原理とその厳密な証明~数列版・関数版~

数学における「追い出しの原理」といわれるものについて,その定理と,大学で習うイプシロンエヌ論法・イプシロンデルタ論法を用いた証明を行います。数列版・関数版の両方の証明を行います。
微分積分学(大学)

はさみうちの原理とその厳密な証明~数列版・関数版~

高校数学で扱う「はさみうちの原理 (挟み撃ちの原理; squeeze theorem)」は,大学数学におけるイプシロンエヌ論法・イプシロンデルタ論法を用いて厳密に証明されます。これについて数列版・関数版の両方について丁寧に紹介しましょう。
微分積分学(大学)

イプシロンデルタ論法をわかりやすく丁寧に~関数の極限の定義~

関数の極限・連続性を定義するε-δ論法について,その定義と「お気持ち」部分を図解を交えて詳細に紹介します。後ろの方では,ε-δ論法の否定や左極限(左連続)・右極限(右連続)ついても紹介します。長文記事ですから,焦らずにじっくりと読み進めていきましょう。
微分積分学(大学)

イプシロンエヌ論法をわかりやすく丁寧に~数列の極限の定義~

数列の極限を厳密に定義するε-N論法について,その定義とイメージを具体例を交えて詳細に解説します。収束するものと,±∞に発散するものを分けて扱います。最後には,ε-N論法の否定も扱います。長文記事ですから,腰を据えて読み進めていきましょう。
線形代数学

転置行列の定義と基本的な性質11個の証明

行列における,「転置行列 (transposed matrix) 」について,定義を述べ,それから転置行列と逆行列の関係などの9個の基本的な性質を,自明なものを除き証明付きで紹介します。転置行列の求め方をイメージしやすくするために,図も添えます。
LaTeX

【LaTeX】ドット・3点ドット記号11個一覧とその使い分け

LaTeXにおける,ドット・3点ドット(3点リーダー)のコマンドを一覧で紹介します。なお,amsmath パッケージの使用は仮定しています。文字の上につくドットも紹介します。