線形代数学サラスの公式で3次の行列式を求める方法を図解 「サラスの公式」または「サラスの方法 (Sarrus' rule) 」とは,3次正方行列の行列式(det)を求める記憶術を指します。これがどういうものか,図解を交えて解説しましょう。 2021.04.05線形代数学
線形代数学転置行列の定義と基本的な性質11個の証明 行列における,「転置行列 (transposed matrix) 」について,定義を述べ,それから転置行列と逆行列の関係などの9個の基本的な性質を,自明なものを除き証明付きで紹介します。転置行列の求め方をイメージしやすくするために,図も添えます。 2021.03.26線形代数学
線形代数学線形写像が単射になる必要十分条件は核(Ker)が0になる証明 今回のテーマは,いつ線形写像が全射・単射になるか,特に「いつ単射になるか」については非常に大事なので,これについて証明します。主張は以下の通り: 線形写像が単射になるのと,Ker f = {0} となるのは同値である。 2021.03.23線形代数学
線形代数学行列の基本変形についてわかりやすく図解する 行列の行基本変形・列基本変形について,定義と基本行列 (elementary matrix) との演算対応,行列式との関係について順に,図を用いながら解説していきます。 2021.03.22線形代数学
線形代数学線形代数(行列)における置換・奇置換・偶置換の最低限必要な知識 線形代数学や群論において登場する「置換 (permutation) 」やその関連概念である置換の積・奇置換・偶置換・互換・逆置換・置換の符号について,特に線形代数の行列式を定義するにあたって必要な知識のみをまとめて解説します。 2021.03.21線形代数学
線形代数学線形写像の像(Im),核(Ker)の定義とそれが部分空間になる証明 まず,線形写像における像 (image)・核 (kernel) の定義を確認・図解します。そしてこの二つがベクトル空間になることを証明しましょう。 2021.03.16線形代数学
線形代数学【アダマール積】行列の要素ごとの積 「行列の積」というと,難しい定義のものが一般的ですが,行列の要素・成分ごとの積であるアダマール積 (Hadamard product) について,定義とその基本的な性質を紹介します。 2021.03.10線形代数学
線形代数学線形写像の定義・性質と具体例8つ 線形代数学ではとても大事な写像である,線形写像 (線型写像, linear map) について,その定義と,基本的な性質と具体例8個を確認していきましょう。ひとつずつ丁寧に,証明やコメントを添えながら進めていきます。 2021.03.09線形代数学
線形代数学行列の演算(和・定数倍・積)の定義と性質をわかりやすく丁寧に 行列の代表的な3つの演算である和 (sum)・定数倍 (constant times)・積 (product)とはどのようなものかについて,その定義と性質を見ていきましょう。特に行列の積の定義は難しいため,図解を交えてわかりやすく解説します。 2021.03.08線形代数学
線形代数学【行列とは】行列・正方行列・零行列・単位行列の定義と例 線形代数学における最も基本的な概念の一つである,行列 (matrix)・正方行列 (square matrix)・零行列 (zero matrix)・単位行列 (identity matrix) の基本的な定義とその具体例について解説します。 2021.03.06線形代数学