解析学(大学)その他 Frullani integralとその証明 Frullani 積分 (Frullani integral) について,その主張を紹介し,それを証明します。 2021.06.07 解析学(大学)その他
解析学(大学)その他 反復積分は1回の積分で表せる証明~反復積分に関するコーシーの公式~ 反復積分は,1つの積分で表すことが可能です。これを,反復積分に関するコーシーの公式 (Cauchy formula for repeated integration) と言います。これについて紹介し,証明しましょう。 2021.06.06 解析学(大学)その他
集合と位相 べき集合とは何かをわかりやすく~定義と具体例と性質~ 大学数学において,「べき集合 (power set)」は詰まりやすい概念の1つでしょう。一言でいうと,べき集合とは,ある集合の部分集合全体の集合を指します。これについて,その定義を,具体例を交えてわかりやすく解説し,最後に性質も述べます。 2021.06.05 集合と位相
微分積分学(大学) 1/nlogn型の級数の収束・発散 1/n^pの和の収束・発散について,0<p≤1で発散し,p>1で収束することは有名でしょう。これと同じようなことが,1/(n(log n)^p)の無限和についても成り立ちます。この定理の主張について確認し,広義積分による収束判定法を用いて証明しましょう。 2021.06.04 微分積分学(大学)
微分積分学(大学) 【級数の収束判定法】Cauchy Condensation Test 級数の収束判定法の1つである,Cauchy condensation test(あるいは日本語で「コーシーの凝集判定法」)について,その定理の主張と証明を追っていきましょう。 2021.06.03 微分積分学(大学)
統計学 ReLU関数(ランプ関数,正規化線形関数)とは ReLU関数 (Rectified Linear Unit),より一般に「ランプ関数 (ramp function)」「正規化線形関数」とは,x≥0のときx,x<0のとき0となる関数のことです。この関数の定義とグラフ,その性質を述べましょう。 2021.05.31 統計学
統計学 シグモイド関数の定義とグラフと性質8つ さまざまな分野で登場するシグモイド関数 (sigmoid function) について,その定義とグラフ,性質8個(単調性・対称性・極限・微分・双曲線関数tanhとの関係・逆関数など)を詳しくまとめます。 2021.05.28 統計学
微分積分学(大学) 微分積分学の基本定理とその証明 微分積分学の基本定理とは,リーマン和による積分と,原始関数の概念をつなげる重要かつ基本的な定理です。「微分と積分は逆の操作であることを保証する定理」と言ってもいいでしょう。これについて,その主張と証明を紹介します。 2021.05.27 微分積分学(大学)
解析学(大学)その他 【トマエ関数】無理数で連続,有理数で不連続な関数 有理数で分母分の1,無理数で0となる関数をトマエ関数 (Thomae function) と言います。この関数について,その定義と性質2つ(無理数で連続,有理数で不連続,リーマン積分可能性)を紹介しましょう。 2021.05.26 解析学(大学)その他
解析学(大学)その他 ディリクレ関数の定義と性質5つ 有理数で1,無理数で0となる有名な関数「ディリクレ関数 (Dirichlet function)」について,その定義と重要な性質5つ(いたるところ不連続,リーマン積分可能性,ルベーグ積分不可能性,cosの2重極限でかけることなど)をまとめます。 2021.05.24 解析学(大学)その他