微分積分学(大学) 原始関数・不定積分の厳密な定義とその違い ときに出てくる2つの言葉である「原始関数」と「不定積分」について,その専門数学における厳密な定義と違いについて述べ,理解を深めましょう。おいては,原始関数と不定積分は同じものと定義されます。今回はその立場を取らず,原始関数と不定積分は違うものとして定義します。 2021.07.31 微分積分学(大学)
微分積分学(大学) ベータ関数とは~定義と性質8つとその証明~ ベータ関数 (beta function) とは,B(x,y) = ∫_0^1 t^{x-1} (1-t)^{y-1} dt と定義される特殊関数です。これについて,その定義と性質とその証明を行いましょう。 2021.07.28 微分積分学(大学)
微分積分学(大学) ガンマ関数とは~定義と性質をわかりやすく~ 階乗の一般化であり,解析学でよく使われる関数であるガンマ関数 (Gamma function) について,その定義と性質を詳しく述べましょう。 2021.07.27 微分積分学(大学)複素関数論
記号・記法 【数学】well-defined, ill-definedとは 数学における well-defined, ill-defined とは,それぞれ「ちゃんと定義できている」,「定義があいまい・無効・無意味である」ことを意味します。この言葉について,具体例も交えながら,分かりやすく紹介しましょう。 2021.07.26 記号・記法
線形代数学 小行列式とは m×n行列における小行列式とは,いくつかの行・列を同じ数だけ取り出して,それのみ並べ直したr次正方行列の行列式(det)のことを指します。このことについて,定義と,元の行列の階数(ランク)との関係,また余因子との関係も述べましょう。 2021.07.25 線形代数学
線形代数学 余因子行列の定義と余因子展開~逆行列になる証明~ 余因子 (cofactor)・余因子行列 (adjugate matrix) の定義と余因子展開について図解付きで述べ,余因子行列が逆行列の行列式倍になることの証明を行いましょう。 2021.07.24 線形代数学
確率論 コーシー分布の定義と性質とその証明 コーシー分布 (Cauchy distribution) は,期待値が定義できず,正規分布より減衰が遅い,裾の厚い分布(裾の重い分布)として有名です。確率密度関数はp(x) = 1/π(x^2+1)となります。これについて,その定義と性質の証明を詳しく述べましょう。 2021.07.23 確率論
集合と位相 可算集合と非可算集合(可算無限・非可算無限) 専門数学を理解するにあたって重要な概念の一つの「無限の大小」について,すなわち可算集合(countable set, 可算無限)と非可算集合(非可算無限)について,その定義と性質を紹介しましょう。非可算集合については,連続体濃度を扱います。 2021.07.22 集合と位相
集合と位相 集合の濃度をわかりやすく丁寧に 集合の「濃度 (cardinality) 」とは,集合の要素の個数の概念を,無限個の集合についても適用できるよう一般化したものです。これの定義について,分かりやすく丁寧に説明していきましょう。 2021.07.19 集合と位相
記号・記法 【定義の記号】数学における:=記号の意味 数学において,コロンに等号をつけた := という記号は,左辺を右辺で定義するという意味になります。また,逆に =: という記号は,右辺を左辺で定義するという意味です。これについて紹介しましょう。 2021.07.16 記号・記法