用語・記号の定義

微分積分学(大学)

上極限,下極限(limsup,liminf)の定義と例と性質2つ

数列における上極限(limsup)・下極限(liminf)の定義をし,その具体例と重要な性質2つ(上極限・下極限に収束する部分列の存在,上極限・下極限が一致 ⇒ 極限の存在)を確認・証明していきましょう。
微分積分学(大学)

上限,下限(sup,inf)の定義と最大,最小(max,min)との違い

実数の部分集合における上限(sup)・下限(inf)の定義を述べ,それが最小上界・最大下界になることの証明をし,さらに上限(sup)・下限(inf)と最大値(max)・最小値(min)との違いを考えます。
微分積分学(大学)

上界・下界とは~定義と具体例~

実数の部分集合における上界 (upper bound)・下界 (lower bound)についてその定義と具体例を紹介します。
微分積分学(大学)

逆双曲線関数の導出とグラフと性質(微分・積分など)まとめ

逆双曲線関数ともいう,双曲線関数 sinh, cosh, tanh の逆関数 sinh^{-1}, cosh^{-1}, tanh^{-1} (arcsinh, arccosh, arctanh) について,その定義と導出,グラフと性質(微分・積分など)をまとめましょう。
微分積分学(大学)

双曲線関数(sinh,cosh,tanh)の定義と性質22個まとめ

双曲線関数sinh, cosh, tanhの定義とグラフについて解説し,さらにその性質22個(加法定理・極限・微分・積分・テイラー展開など)を三角関数sin, cos, tanと比較しながらまとめます。
微分積分学(大学)

リーマン和による定積分の定義とリーマン積分可能・不可能な例

高校や大学教養数学で学習する定積分はリーマン積分 (Riemann integral) と呼ばれ,リーマン和を用いて定義されます。これについて,その定義と単調または連続関数はリーマン積分可能であること,そしてリーマン積分不可能な関数の例について,順に述べましょう。
微分積分学(大学)

有理数・無理数の稠密性の定義とその証明

大学教養の微分積分学における実数上の「稠密性(ちゅうみつせい, dense)」の概念について,その定義を紹介し,さらに有理数・無理数が実数上稠密であることを証明します。最後には位相空間論における稠密性についても触れます。
線形代数学

行列式(det)の定義と現実的な求め方~計算の手順~

正方行列に対して定義される「行列式 (determinant) 」というスカラー量について,その定義を述べ,それから実際の計算方法を4つのステップに分けて解説します。計算の具体例も挙げます。行列式の計算は,線形代数学のテストで頻出ですので,確実に理解しましょう。
線形代数学

上三角行列・下三角行列の定義と性質6つ

正方行列における,上三角行列 (あるいは右三角行列)・下三角行列 (あるいは左三角行列)・三角行列 (triangular matrix) の定義と,その性質6つを紹介します。
線形代数学

ベクトル空間の和・直和の定義とその次元の等式の証明

ベクトル空間の和・直和についての定義と,次元に関する等式dim(V+W) = dim V + dim W - dim(V\cap W)の証明を行います。これは,基底を考えることで証明できます。最後には,3つ以上の和・直和について考えます。
タイトルとURLをコピーしました