用語・記号の定義

集合と位相

べき集合とは何かをわかりやすく~定義と具体例と性質~

大学数学において,「べき集合 (power set)」は詰まりやすい概念の1つでしょう。一言でいうと,べき集合とは,ある集合の部分集合全体の集合を指します。これについて,その定義を,具体例を交えてわかりやすく解説し,最後に性質も述べます。
線形代数学

正則行列とは~定義と性質11個とその証明~

正方行列が正則 (regular),あるいは単に正則行列 (regular matrix) であるとは,逆行列が存在することを指します。これについて,その定義と性質11個(逆行列の一意性,正則行列と積・転置・行列式・固有値との関係など)を,証明付きで順に紹介しましょう。
線形代数学

逆行列の定義と2通りの求め方~計算の手順~

正方行列における,逆行列 (inverse of the matrix) の定義と,その計算方法2通りを,手順を追って解説します。計算方法は,掃き出し法による計算と,余因子行列を用いた計算を紹介します。
統計学

ReLU関数(ランプ関数,正規化線形関数)とは

ReLU関数 (Rectified Linear Unit),より一般に「ランプ関数 (ramp function)」「正規化線形関数」とは,x≥0のときx,x<0のとき0となる関数のことです。この関数の定義とグラフ,その性質を述べましょう。
統計学

シグモイド関数の定義とグラフと性質8つ

さまざまな分野で登場するシグモイド関数 (sigmoid function) について,その定義とグラフ,性質8個(単調性・対称性・極限・微分・双曲線関数tanhとの関係・逆関数など)を詳しくまとめます。
解析学(大学)その他

【トマエ関数】無理数で連続,有理数で不連続な関数

有理数で分母分の1,無理数で0となる関数をトマエ関数 (Thomae function) と言います。この関数について,その定義と性質2つ(無理数で連続,有理数で不連続,リーマン積分可能性)を紹介しましょう。
解析学(大学)その他

ディリクレ関数の定義と性質5つ

有理数で1,無理数で0となる有名な関数「ディリクレ関数 (Dirichlet function)」について,その定義と重要な性質5つ(いたるところ不連続,リーマン積分可能性,ルベーグ積分不可能性,cosの2重極限でかけることなど)をまとめます。
線形代数学

【行列の簡約化】RREF行列(Reduced row echelon form)とは

階段行列のうち,特別な形のものをRREF行列 (Reduced row echelon form) といい,この行列に変形することを「行列の簡約化」といいます。本記事では,これの定義と,その求め方を分かりやすく紹介します。
線形代数学

階段行列とは~定義と例と作り方~

行列における階段行列 (step matrix) について,最初に定義と例を確認し,さらにその作り方・手順を,分かりやすく図解しながら述べましょう。
確率論

ベルヌーイ分布とは~定義と性質の導出~

ベルヌーイ分布 (Bernoulli distribution) は,ある確率pで1を,残りの確率1-pで0となるような確率分布のことです。これについて,その定義と性質(平均・分散・標準偏差・積率母関数・特性関数など)を述べましょう。