用語・記号の定義

確率論

一様分布の定義と性質のわかりやすいまとめ~離散型・連続型~

一様分布 (uniform distribution) は,最も基本的な確率分布の1つです。本記事では,そんな一様分布(離散一様分布・連続一様分布)の定義と,その諸性質(平均・分散・標準偏差・積率母関数・特性関数など)を導出付きでまとめます。
線形代数学

行列単位とは~定義と性質~

行列単位 E_{ij} (matrix unit) とは,(i,j) 成分のみが1で,それ以外の成分が0となる行列を指します。これについて,その定義と積に関する性質3つを紹介します。
線形代数学

行列のトレース(tr)とは~定義と性質とその証明~

正方行列に対して定義されるトレース(trace, 跡)とは,対角成分の和を指します。これについて,定義を図を交えて整理し,さらにその性質(線形性・可換,相似不変性・固有値との関係・可換性のある線形汎関数は固有値に限る)を証明しましょう。
微分積分学(大学)

【べき級数】収束半径の定義と求め方とその具体例3つ

べき級数の収束半径 (radius of convergence) について,その定義とダランベールの公式・コーシーアダマールの公式を用いた求め方,そしてその具体例3つについて,順番に考えていきましょう。
微分積分学(大学)

テイラー展開・マクローリン展開とは【解析的な関数と具体例】

テイラー展開(テーラー展開, Taylor expansion)・マクローリン展開 (Maclaurin expansion) は,関数のべき級数展開と言えます。まずはその定義と感覚的な理解,そして具体例を述べ,そして無限回微分可能であっても,マクローリン展開できないような関数も触れましょう。
微分積分学(大学)

上極限,下極限(limsup,liminf)の定義と例と性質2つ

数列における上極限(limsup)・下極限(liminf)の定義をし,その具体例と重要な性質2つ(上極限・下極限に収束する部分列の存在,上極限・下極限が一致 ⇒ 極限の存在)を確認・証明していきましょう。
微分積分学(大学)

上限,下限(sup,inf)の定義と最大,最小(max,min)との違い

実数の部分集合における上限(sup)・下限(inf)の定義を述べ,それが最小上界・最大下界になることの証明をし,さらに上限(sup)・下限(inf)と最大値(max)・最小値(min)との違いを考えます。
微分積分学(大学)

上界・下界とは~定義と具体例~

実数の部分集合における上界 (upper bound)・下界 (lower bound)についてその定義と具体例を紹介します。
微分積分学(大学)

逆双曲線関数の導出とグラフと性質(微分・積分など)まとめ

逆双曲線関数ともいう,双曲線関数 sinh, cosh, tanh の逆関数 sinh^{-1}, cosh^{-1}, tanh^{-1} (arcsinh, arccosh, arctanh) について,その定義と導出,グラフと性質(微分・積分など)をまとめましょう。
微分積分学(大学)

双曲線関数(sinh,cosh,tanh)の定義と性質22個まとめ

双曲線関数sinh, cosh, tanhの定義とグラフについて解説し,さらにその性質22個(加法定理・極限・微分・積分・テイラー展開など)を三角関数sin, cos, tanと比較しながらまとめます。