解析学(大学)その他 ヤングの不等式の証明とその一般化 ヤングの不等式(Young's inequality)とは,任意のa,b>0 と 1/p+1/q=1をみたす p,q>1 に対し,ab ≦ a^p/p + b^q/q という不等式のことを言います。これについて,証明とその発展形を紹介しましょう。 2022.04.18 解析学(大学)その他
線形代数学 二次形式とその行列表示 二次形式 (quadratic form) とは,2次の項しかない1変数または多変数多項式のことをいいます。二次形式について,その定義と,行列を用いた表し方を解説しましょう。 2022.04.11 線形代数学
線形代数学 行列の特異値とは~定義と性質~ 行列の特異値とは,一般のm×n行列に対して定義される固有値みたいなものです。厳密には,AA^*のように正方行列にしてから,固有値を考えます。行列の特異値について,定義と性質を述べましょう。 2022.04.04 線形代数学
線形代数学 列ベクトルと行ベクトルの定義と違い 数を縦に一列に並べたものを列ベクトルといい,数を横に一列に並べたものを行ベクトルといいます。列ベクトルと行ベクトルについて,その定義と基本的な違いを解説しましょう。 2022.02.17 線形代数学
線形代数学 線形同型写像とベクトル空間の同型 線形同型写像とは,全単射な線形写像を指します。このような写像が存在する2つのベクトル空間は同型であるといい,全く同じものとして扱うことが可能です。線形同型写像とベクトル空間の同型について,基本的なことをおさえましょう。 2022.01.23 線形代数学
数論 メビウス関数とメビウスの反転公式の証明 メビウス関数(Möbius function)とは,数論的関数の1つで,重要な役割を果たします。メビウス関数の定義と,メビウスの反転公式(Möbius inversion formula)の証明を行いましょう。 2021.12.30 数論
統計学 コサイン類似度とは~定義と具体例~ コサイン類似度 (cosine similarity) とは,ベクトルの向きの類似度を測る指標で,内積を用いて定義されます。コサイン類似度の定義と,2次元の場合の具体例を述べましょう。 2021.12.20 統計学
数論 約数関数とは~定義と基本的な性質とその証明~ 約数関数 (divisor function) とは,ある数に対し,その数の正の約数の累乗の和を計算する関数です。約数関数について,その定義と基本的な性質とその証明を行いましょう。 2021.12.19 数論
線形代数学 正定値行列・半正定値行列の定義・性質3つとその証明 正定値行列 (positive definite matrix) とは内積について <Ax, x>>0が成り立つ行列で,半正定値行列とは,<Ax, x>≧0 が成り立つ行列です。正定値行列・半正定値行列について,その定義と性質を紹介しましょう。 2021.12.07 線形代数学
線形代数学 グラム行列の定義と主な性質3つ グラム行列 (Gram matrix) とは,(i, j)成分がベクトルx_i,x_jの内積になる行列のことです。これについて,定義と性質を証明付きで解説しましょう。 2021.12.05 線形代数学