微分積分学(大学)

微分積分学(大学)

【ウォリス積分】sin,cosのn乗積分の導出と性質

ウォリス積分,またはワリス積分 (Wallis integral) と呼ばれる積分\int_0^{\pi/2} \sin^n x dx, \int_0^{\pi/2} \cos^n x dx について紹介しましょう。証明は理系高校生でも理解できるものです。
微分積分学(大学)

log(1+x)の0でのテイラー展開(マクローリン展開)

log(1+x)の0でのテイラー展開,すなわちマクローリン展開について,その厳密な導出と収束半径・収束する範囲についてわかりやすく丁寧に紹介します。最後には交代調和級数の話題や複素数のlog(1+z)についての議論も行います。
微分積分学(大学)

ロピタルの定理を誤りなく使おう~具体例6つと証明~

ロピタルの定理(l'Hôpital's rule)と言えば,適用条件が難しく,使うときは注意せよといわれる定理の1つでしょう。今回はロピタルの定理について,その主張と成り立つ・成り立たない例を確認し,そして最後に証明を述べることにしましょう。
微分積分学(大学)

【べき級数】収束半径の定義と求め方とその具体例3つ

べき級数の収束半径 (radius of convergence) について,その定義とダランベールの公式・コーシーアダマールの公式を用いた求め方,そしてその具体例3つについて,順番に考えていきましょう。
微分積分学(大学)

三角関数sin,cosのマクローリン展開(0でのテイラー展開)

サイン・コサインの0でのテイラー展開,すなわちマクローリン展開について,その導出を考えます。具体的な導出については,まずマクローリン展開の復習をし,それから形式的な導出・ちゃんとした導出・オイラーの公式を用いた理解を順番に行います。収束半径についても確認します。
微分積分学(大学)

テイラー展開・マクローリン展開とは【解析的な関数と具体例】

テイラー展開(テーラー展開, Taylor expansion)・マクローリン展開 (Maclaurin expansion) は,関数のべき級数展開と言えます。まずはその定義と感覚的な理解,そして具体例を述べ,そして無限回微分可能であっても,マクローリン展開できないような関数も触れましょう。
微分積分学(大学)

積分の平均値の定理とその2通りの証明

微分積分学における,積分バージョンの平均値の定理について,その主張と証明を述べます。証明には最大値・最小値定理と中間値の定理も用います。fが[a,b]上連続のとき,f(c) = \frac{1}{b-a} \int_a^b f(x) dx となるa<c<bが存在する。
微分積分学(大学)

テイラーの定理・マクローリンの定理とその証明

平均値の定理の一般化であるテイラーの定理(テーラーの定理; Taylor's theorem)とマクローリンの定理について,その主張と証明を述べます。ラグランジュの剰余項の他にコーシーの剰余項,剰余項の積分表現など,さまざまな剰余項についても紹介します。
微分積分学(大学)

コーシーの平均値の定理とその証明

普通の平均値の定理(ラグランジュの平均値の定理)を拡張した「コーシーの平均値の定理 (Cauchy's mean value theorem) 」について,その主張と証明を紹介します。証明にはロルの定理を用います。
微分積分学(大学)

平均値の定理・ロルの定理とその証明

高校理系数学や大学教養数学(微分積分学)に登場する,平均値の定理 (mean value theorem) と,その準備としてロルの定理 (Rolle's theorem) をわかりやすく紹介し,それぞれの証明を行います。