統計学 ReLU関数(ランプ関数,正規化線形関数)とは ReLU関数 (Rectified Linear Unit),より一般に「ランプ関数 (ramp function)」「正規化線形関数」とは,x≥0のときx,x<0のとき0となる関数のことです。この関数の定義とグラフ,その性質を述べましょう。 2021.05.31 統計学
統計学 シグモイド関数の定義とグラフと性質8つ さまざまな分野で登場するシグモイド関数 (sigmoid function) について,その定義とグラフ,性質8個(単調性・対称性・極限・微分・双曲線関数tanhとの関係・逆関数など)を詳しくまとめます。 2021.05.28 統計学
微分積分学(大学) 微分積分学の基本定理とその証明 微分積分学の基本定理とは,リーマン和による積分と,原始関数の概念をつなげる重要かつ基本的な定理です。「微分と積分は逆の操作であることを保証する定理」と言ってもいいでしょう。これについて,その主張と証明を紹介します。 2021.05.27 微分積分学(大学)
解析学(大学)その他 【トマエ関数】無理数で連続,有理数で不連続な関数 有理数で分母分の1,無理数で0となる関数をトマエ関数 (Thomae function) と言います。この関数について,その定義と性質2つ(無理数で連続,有理数で不連続,リーマン積分可能性)を紹介しましょう。 2021.05.26 解析学(大学)その他
解析学(大学)その他 ディリクレ関数の定義と性質5つ 有理数で1,無理数で0となる有名な関数「ディリクレ関数 (Dirichlet function)」について,その定義と重要な性質5つ(いたるところ不連続,リーマン積分可能性,ルベーグ積分不可能性,cosの2重極限でかけることなど)をまとめます。 2021.05.24 解析学(大学)その他
微分積分学(大学) べき級数におけるアーベルの定理とその応用例・証明 べき級数におけるアーベルの定理(アーベルの連続性定理; Abel's theorem)について,その定理の主張と応用例,そして証明を述べましょう。実数の場合と複素数の場合の両方を別々に扱います。 2021.05.22 微分積分学(大学)複素関数論
確率論 ベルヌーイ分布とは~定義と性質の導出~ ベルヌーイ分布 (Bernoulli distribution) は,ある確率pで1を,残りの確率1-pで0となるような確率分布のことです。これについて,その定義と性質(平均・分散・標準偏差・積率母関数・特性関数など)を述べましょう。 2021.05.19 確率論
確率論 一様分布の定義と性質のわかりやすいまとめ~離散型・連続型~ 一様分布 (uniform distribution) は,最も基本的な確率分布の1つです。本記事では,そんな一様分布(離散一様分布・連続一様分布)の定義と,その諸性質(平均・分散・標準偏差・積率母関数・特性関数など)を導出付きでまとめます。 2021.05.18 確率論
微分積分学(大学) 【スターリングの公式】階乗n!の近似公式とその厳密な証明 n!の近似公式であるスターリングの公式 (Stirling's formula) について,その主張と厳密な証明を紹介します。n!~√2π(n/e)^nである。ここで,f~gとは,f(x)/g(x) → 1 (x→1) を指す。 2021.05.16 微分積分学(大学)
微分積分学(大学) ウォリスの公式3つとその証明 ウォリスの公式 (Wallis formula,ワリスの公式) と呼ばれる公式を3つの形で紹介し,それらの公式を証明します。円周率πが登場するきれいな公式の1つです。 2021.05.15 微分積分学(大学)