解析学(大学)

微分積分学(大学)

積分の平均値の定理とその2通りの証明

微分積分学における,積分バージョンの平均値の定理について,その主張と証明を述べます。証明には最大値・最小値定理と中間値の定理も用います。fが[a,b]上連続のとき,f(c) = \frac{1}{b-a} \int_a^b f(x) dx となるa<c<bが存在する。
微分積分学(大学)

テイラーの定理・マクローリンの定理とその証明

平均値の定理の一般化であるテイラーの定理(テーラーの定理; Taylor's theorem)とマクローリンの定理について,その主張と証明を述べます。ラグランジュの剰余項の他にコーシーの剰余項,剰余項の積分表現など,さまざまな剰余項についても紹介します。
微分積分学(大学)

コーシーの平均値の定理とその証明

普通の平均値の定理(ラグランジュの平均値の定理)を拡張した「コーシーの平均値の定理 (Cauchy's mean value theorem) 」について,その主張と証明を紹介します。証明にはロルの定理を用います。
微分積分学(大学)

平均値の定理・ロルの定理とその証明

高校理系数学や大学教養数学(微分積分学)に登場する,平均値の定理 (mean value theorem) と,その準備としてロルの定理 (Rolle's theorem) をわかりやすく紹介し,それぞれの証明を行います。
微分積分学(大学)

上極限,下極限(limsup,liminf)の定義と例と性質2つ

数列における上極限(limsup)・下極限(liminf)の定義をし,その具体例と重要な性質2つ(上極限・下極限に収束する部分列の存在,上極限・下極限が一致 ⇒ 極限の存在)を確認・証明していきましょう。
微分積分学(大学)

上限,下限(sup,inf)の定義と最大,最小(max,min)との違い

実数の部分集合における上限(sup)・下限(inf)の定義を述べ,それが最小上界・最大下界になることの証明をし,さらに上限(sup)・下限(inf)と最大値(max)・最小値(min)との違いを考えます。
微分積分学(大学)

上界・下界とは~定義と具体例~

実数の部分集合における上界 (upper bound)・下界 (lower bound)についてその定義と具体例を紹介します。
微分積分学(大学)

逆双曲線関数の導出とグラフと性質(微分・積分など)まとめ

逆双曲線関数ともいう,双曲線関数 sinh, cosh, tanh の逆関数 sinh^{-1}, cosh^{-1}, tanh^{-1} (arcsinh, arccosh, arctanh) について,その定義と導出,グラフと性質(微分・積分など)をまとめましょう。
微分積分学(大学)

双曲線関数(sinh,cosh,tanh)の定義と性質22個まとめ

双曲線関数sinh, cosh, tanhの定義とグラフについて解説し,さらにその性質22個(加法定理・極限・微分・積分・テイラー展開など)を三角関数sin, cos, tanと比較しながらまとめます。
微分積分学(大学)

リーマン和による定積分の定義とリーマン積分可能・不可能な例

高校や大学教養数学で学習する定積分はリーマン積分 (Riemann integral) と呼ばれ,リーマン和を用いて定義されます。これについて,その定義と単調または連続関数はリーマン積分可能であること,そしてリーマン積分不可能な関数の例について,順に述べましょう。