解析学(大学)

関数解析学

ノルムとは~ノルム空間の定義と具体例~

ノルム(norm)とは,ベクトルの大きさを定める量のようなものです。ノルムを定義することで,ベクトル同士の「距離」を考えることができるようになり,収束の議論ができるようになります。ノルム・ノルム空間の定義を述べ,その簡単な具体例を紹介しましょう。
解析学(大学)その他

【f(x+y)=f(x)+f(y)】コーシーの関数方程式について詳しく

コーシーの関数方程式 (Cauchy's functional equation) とは,f(x+y)=f(x)+f(y)となる関数方程式のことを言います。これの解fを求め,さらにその関連である関数方程式の解を求めましょう。
測度論

測度論におけるシュタインハウスの定理とその証明

R^Nにおける可測集合は,それ自身はなかなか実態がよくわからないものかもしれません。しかし,零集合でない可測集合を2つ用意して,A+Bを考えると,これは開集合を含むようになります。シュタインハウスの定理(Steinhaus's theorem)といわれる本定理を紹介し,証明しましょう。
測度論

【ヴィタリ集合】ルベーグ非可測集合の存在とその証明

ヴィタリ集合(vitali set)とは,剰余群R/Qにおける各代表元の集合を指し,選択公理を仮定することで存在が認められます。ヴィタリ集合はルベーグ非可測集合の例として有名です。ヴィタリ集合について,その構成とルベーグ非可測であることの証明を行いましょう。
微分方程式

バナッハの不動点定理(縮小写像の原理)とその証明

バナッハの不動点定理 (Banach's fixed-point theorem) あるいは縮小写像の原理 (contraction mapping principle) とは, 縮小写像 f: X→X が唯一つ不動点を持ち,その不動点は任意の点からfで何回もうつすことで近似可能という定理です。これについて,主張と証明を行いましょう。
測度論

本質的上限・本質的下限(esssup,essinf)とは何か

測度論・関数解析における本質的上限・本質的下限(esssup, essinf)とは,零集合を無視した上限・下限のことを言います。本質的上限・本質的下限について,ちゃんとした定義と具体例・性質を挙げましょう。
関数解析学

ミンコフスキーの不等式とその証明

ミンコフスキーの不等式 (Minkowski's inequality) とは,L^pノルムに関する三角不等式のことをいいます。ミンコフスキーの不等式について,その証明を行いましょう。
関数解析学

ヘルダーの不等式とその証明

ヘルダーの不等式(Hölder's inequality)とは,関数解析学における基本的な不等式であり,コーシーシュワルツの不等式の一般化にもなっています。ヘルダーの不等式について,その主張と証明を分かりやすく紹介します。
解析学(大学)その他

ヤングの不等式の証明とその一般化

ヤングの不等式(Young's inequality)とは,任意のa,b>0 と 1/p+1/q=1をみたす p,q>1 に対し,ab ≦ a^p/p + b^q/q という不等式のことを言います。これについて,証明とその発展形を紹介しましょう。
測度論

単調族の定義と単調族定理の証明

集合の部分集合族が「単調族 (monotone class) 」であるとは,無限個の集合の上昇列や下降列に関して閉じていることを言います。単調族について,その詳しい定義と,有名で大切な単調族定理の証明を行いましょう。