用語・記号の定義

線形代数学

対称行列の定義と性質4つとその証明

対称行列 (symmetric matrix) とは,自身とその転置行列が同じである行列を指します。対称行列の定義・性質4つを紹介しましょう。
線形代数学

数ベクトルの定義と数ベクトルにおけるノルム・内積

数ベクトルとは,ざっくりいうと数を並べたものです。数を並べたものを「ベクトル」という一つのかたまりとして扱うことで,いろいろ便利なことがあるわけです。今回は,「便利なこと」の紹介はしませんが,数ベクトルとは何かの定義とノルム・内積といった大切な概念を一気に解説しましょう。
線形代数学

正規行列とは~定義・性質6つとその証明~

正規行列 (normal matrix) とは,AA^*=A^*Aが成り立つ正方行列を指します。ただし,Aの随伴行列(共役転置)です。これについて,その定義・具体例・性質を証明付きで紹介しましょう。
線形代数学

ユニタリ行列の定義と性質10個とその証明

ユニタリ行列 (unitary matrix) とは,UU^* =U^*U= I_nとなる正方行列 U を指します。これについて,定義と性質とその証明を行いましょう。
線形代数学

直交行列の定義と性質10個とその証明

直交行列 (orthogonal matrix) とは,A A^T =A^T A = I_n となる正方行列 A を指します。これについて,定義と性質10個とその証明を行いましょう。
記号・記法

二項演算・単項演算とは

二項演算 (binary operation)・単項演算 (unary operation) は,厳密には集合上の写像として定義されます。これについて,その定義と例を紹介しましょう。
解析学(大学)その他

凸包とは何か~定義と具体例と性質~

集合Aの凸包 (convex hull) とは,Aを含む最小の凸集合を指します。これについて,定義と具体例と性質を述べましょう。
解析学(大学)その他

凸集合とは何かをわかりやすく~定義と性質~

凸集合 (convex set) とは簡単に言うと「へっこんでいない集合」のことをいいます。これについて,ちゃんとした定義と,性質を解説します。
群・環・体

【置換群】対称群・交代群の定義と性質

対称群・交代群はそれぞれ置換・偶置換を集めた集合を表します。「置換・偶置換」とは,行列式の定義に用いたやつです。これについて,詳しい定義や性質を解説しましょう。
群・環・体

巡回群とは~定義・例・性質~

巡回群 (cyclic group) とは,唯一つの元で生成される群を指します。巡回群について,その定義と例・性質4つを順番に紹介しましょう。