集合と位相 同値関係の定義と重要な具体例5つ 同値関係 (equivalence relation) とは,二項関係~のうち,反射律・推移律・対称律をみたすものを言います。これについて,その定義と,重要な具体例5つを紹介しましょう。 2021.10.07 集合と位相
集合と位相 半順序集合・全順序集合の定義・具体例4つとその周辺 半順序集合・全順序集合といった「順序集合」とは,集合内に順序(いわゆる大小関係)が定まった集合といえます。これらについて,その定義と具体例4つを紹介し,順序を保つ写像など,それに関連した知識も紹介します。 2021.10.06 集合と位相
集合と位相 反射律・推移律・対称律・反対称律の定義と具体例7つ 二項関係 (binary relation) の性質である,反射律 (reflexive)・推移律 (transitive)・対称律 (symmetric)・反対称律 (antisymmetric) の定義と具体例7つを紹介します。 2021.10.05 集合と位相
解析学(大学)その他 Completely monotone functionの定義と性質 Completely monotone function という,通常の monotone function (単調な関数) よりも性質の良い関数について紹介します。 2021.09.17 解析学(大学)その他
解析学(大学)その他 Directly Riemann Integrableの定義と例 無限区間でリーマン和(区分求積)を考えることが可能である Directly Riemann Integrable (dRi) な関数について,その定義と例を紹介します。 2021.09.16 解析学(大学)その他
微分積分学(大学) 重積分とは~定義と面積確定集合~ 大学数学で初めて出てくる積分である「重積分 (multiple integral) 」について,その定義と,面積確定集合とは何かについて,図解付きで解説します。 2021.09.15 微分積分学(大学)
線形代数学 べき零行列の定義・例・性質7つとその証明 べき零行列 (nilpotent matrix) とは,行列のべき乗について,A^k=O (右辺は零行列)となるような行列のことです。べき零行列の定義と例,そして性質について,順番に解説しましょう。 2021.09.12 線形代数学
集合と位相 集合族と添字集合 集合族 (集合系; family of sets) とは「集合の集まり」という意味です。たくさんの集合は,添え字を用いてA_1, A_2のように区別されます。集合族と添字集合について,その定義と使い方を解説します。 2021.09.10 集合と位相
集合と位相 選択公理の内容と具体例を詳しく 選択公理とは,「無限個の各集合から一気に一つずつ元を選択することができる」という公理です。専門数学では,多くの場合仮定されますが,自明でない公理なので,気を付けて使う必要があります。そんな選択公理について,その内容と意味・具体例を詳しく解説... 2021.09.05 集合と位相