集合と位相 反射律・推移律・対称律・反対称律の定義と具体例7つ 二項関係 (binary relation) の性質である,反射律 (reflexive)・推移律 (transitive)・対称律 (symmetric)・反対称律 (antisymmetric) の定義と具体例7つを紹介します。 2021.10.05 集合と位相
解析学(大学)その他 Directly Riemann Integrableの定義と例 無限区間でリーマン和(区分求積)を考えることが可能である Directly Riemann Integrable (dRi) な関数について,その定義と例を紹介します。 2021.09.16 解析学(大学)その他
微分積分学(大学) 重積分とは~定義と面積確定集合~ 大学数学で初めて出てくる積分である「重積分 (multiple integral) 」について,その定義と,面積確定集合とは何かについて,図解付きで解説します。 2021.09.15 微分積分学(大学)
微分積分学(大学) ラグランジュの未定乗数法とは~意味と証明~ ラグランジュの未定乗数法 (Lagrange multiplier) は,多変数関数における,条件付き極値問題を解く方法を指します。これについて,その内容とイメージ,証明を解説しましょう。 2021.09.14 微分積分学(大学)
線形代数学 べき零行列の定義・例・性質7つとその証明 べき零行列 (nilpotent matrix) とは,行列のべき乗について,A^k=O (右辺は零行列)となるような行列のことです。べき零行列の定義と例,そして性質について,順番に解説しましょう。 2021.09.12 線形代数学
微分積分学(大学) 【級数】アーベルの収束判定法とその証明 アーベルの収束判定法 (Abel's test) と呼ばれる収束判定法について,その主張と証明を紹介しましょう。 2021.09.11 微分積分学(大学)
集合と位相 集合族と添字集合 集合族 (集合系; family of sets) とは「集合の集まり」という意味です。たくさんの集合は,添え字を用いてA_1, A_2のように区別されます。集合族と添字集合について,その定義と使い方を解説します。 2021.09.10 集合と位相
微分積分学(大学) 2変数・多変数におけるテイラー展開・マクローリン展開 2変数,あるいはより一般に,多変数におけるテイラーの展開・マクローリン展開を,テイラーの定理・マクローリンの定理も同時に述べながら解説します。 2021.09.08 微分積分学(大学)