群・環・体 環の定義・可換環の定義とその具体例6つ 代数学における,環 (ring) ・可換環 (commutative ring) とは,足し算と掛け算を考えられる集合を指します。環の定義・可換環の定義について述べ,その具体例も挙げていきましょう。 2022.02.21 群・環・体
群・環・体 準同型写像・同型写像の定義と基本的な性質【群・環・体】 代数学における「準同型写像・同型写像」とは,代数の演算の構造を保つ写像のことを指します。とくに,同じ代数構造を持つ2つの集合に同型写像が定まれば,その2つは「同じもの」として扱うことが可能です。準同型写像・同型写像の定義・性質について,群・環・体それぞれについて分けて解説していきましょう。 2022.01.04 群・環・体
群・環・体 剰余群(商群)とは~定義・具体例・性質の証明~ 剰余群(商群)とは,群の剰余類の商集合に演算を入れて再び「群」と思ったものを指します。意味不明かもしれませんが,順を追って解説していきます。剰余群(商群)の定義にあたっては,well-defined の概念が非常に大事になってきますから,そこも踏まえてしっかりと理解していきましょう。 2022.01.03 群・環・体
群・環・体 ラグランジュの定理とその証明・応用例【群論】 ラグランジュの定理(Lagrange's theorem)とは,有限群とその部分群の位数における基本的な定理で,有限群の分類などに非常に役に立つ定理です。ラグランジュの定理について紹介・証明し,応用例も挙げましょう。 2022.01.01 群・環・体
群・環・体 剰余類と部分群の指数~定義と具体例~ 群論における剰余類(左剰余類・右剰余類)と剰余集合(左剰余集合・右剰余集合)と部分群の指数の概念を,手順を追って解説していきます。少々長いですが,群論における基本的で重要な概念ですから,ゆっくりと理解していきましょう。 2021.12.31 群・環・体
群・環・体 正規部分群の定義と基本的な判定方法・具体例 正規部分群 (normal subgroup) とは,gNg^{-1} ⊂ N が成立する部分群 H ⊂ G のことを言います。正規部分群の定義と準同型写像の核を用いた判定方法,具体例と大事な性質まで紹介します。 2021.12.27 群・環・体
群・環・体 直交群・回転群(特殊直交群)とは~定義と性質~ 直交群・回転群(特殊直交群)とは,それぞれ直交行列・回転行列の集合のなす群を言います。これについて,定義と性質を述べましょう。 2021.12.02 群・環・体
数論 中国剰余定理とその詳しい証明 中国剰余定理 (chinese remainder theorem) とは,複数の割り算の余りに関する定理です。中国式剰余定理とも言います。中国剰余定理について,その主張と詳しい証明を解説していきます。 2021.11.29 群・環・体数論
群・環・体 【置換群】対称群・交代群の定義と性質 対称群・交代群はそれぞれ置換・偶置換を集めた集合を表します。「置換・偶置換」とは,行列式の定義に用いたやつです。これについて,詳しい定義や性質を解説しましょう。 2021.10.31 群・環・体
群・環・体 巡回群とは~定義・例・性質~ 巡回群 (cyclic group) とは,唯一つの元で生成される群を指します。巡回群について,その定義と例・性質4つを順番に紹介しましょう。 2021.10.30 群・環・体