線形代数学 交代行列の定義と重要な性質5つ 交代行列 (反対称行列,歪対称行列,alternating matrix) とは,転置行列が元の行列の-1倍になる行列,すなわちA^T =-Aをみたす行列を指します。 2021.11.20 線形代数学
線形代数学 エルミート行列の定義と性質4つとその証明 エルミート行列 (Hermitian matrix) とは,随伴行列(共役転置)と元の行列が等しい正方行列を指します。これについて,定義・具体例と性質を証明付きで紹介しましょう。 2021.11.19 線形代数学
線形代数学 対称行列の定義と性質4つとその証明 対称行列 (symmetric matrix) とは,自身とその転置行列が同じである行列を指します。対称行列の定義・性質4つを紹介しましょう。 2021.11.18 線形代数学
線形代数学 数ベクトルの定義と数ベクトルにおけるノルム・内積 数ベクトルとは,ざっくりいうと数を並べたものです。数を並べたものを「ベクトル」という一つのかたまりとして扱うことで,いろいろ便利なことがあるわけです。今回は,「便利なこと」の紹介はしませんが,数ベクトルとは何かの定義とノルム・内積といった大切な概念を一気に解説しましょう。 2021.11.17 線形代数学
線形代数学 正規行列とは~定義・性質6つとその証明~ 正規行列 (normal matrix) とは,AA^*=A^*Aが成り立つ正方行列を指します。ただし,Aの随伴行列(共役転置)です。これについて,その定義・具体例・性質を証明付きで紹介しましょう。 2021.11.15 線形代数学
線形代数学 ユニタリ行列の定義と性質10個とその証明 ユニタリ行列 (unitary matrix) とは,UU^* =U^*U= I_nとなる正方行列 U を指します。これについて,定義と性質とその証明を行いましょう。 2021.11.13 線形代数学
線形代数学 直交行列の定義と性質10個とその証明 直交行列 (orthogonal matrix) とは,A A^T =A^T A = I_n となる正方行列 A を指します。これについて,定義と性質10個とその証明を行いましょう。 2021.11.12 線形代数学
数論 オイラー関数の定義・性質4つとその証明 オイラー関数,あるいはオイラーのファイ関数・オイラーのトーシェント関数とは,1,2,3,..., n-1のうち,nと互いに素なものの個数を指します。これについて,その定義・性質を述べ,証明していきましょう。 2021.11.06 数論
群・環・体 【置換群】対称群・交代群の定義と性質 対称群・交代群はそれぞれ置換・偶置換を集めた集合を表します。「置換・偶置換」とは,行列式の定義に用いたやつです。これについて,詳しい定義や性質を解説しましょう。 2021.10.31 群・環・体