用語・記号の定義

群・環・体

直交群・回転群(特殊直交群)とは~定義と性質~

直交群・回転群(特殊直交群)とは,それぞれ直交行列・回転行列の集合のなす群を言います。これについて,定義と性質を述べましょう。
線形代数学

スカラー行列とは~定義と大事な性質~

スカラー行列 (scalar matrix) とは,単位行列を用いて A=aI_n のように書ける行列のことで,まるでスカラーのように扱える行列を指します。これについて,定義と大事な性質を1つ紹介しましょう。
数論

平方剰余・平方非剰余とルジャンドル記号

合同式における平方剰余(quadratic residue)・平方非剰余(quadratic nonresidue)の概念と,それを扱うのに便利なルジャンドル記号(Legendre symbol)の定義・性質について,順を追って解説していきましょう。
線形代数学

行列の固有多項式・最小多項式の定義・求め方・性質

正方行列における,固有多項式 (characteristic polynomial)・最小多項式 (minimal polynomial) について,その定義と求め方,性質を順番に解説していきましょう。
線形代数学

歪エルミート行列の定義と重要な性質5つ

歪エルミート行列(わいえるみーとぎょうれつ,反エルミート行列)とは,随伴行列(共役転置)をとると元の行列の-1倍になるような行列を指します。すなわち,A^*=-Aですね。これについて,その定義と性質を解説しましょう。
線形代数学

交代行列の定義と重要な性質5つ

交代行列 (反対称行列,歪対称行列,alternating matrix) とは,転置行列が元の行列の-1倍になる行列,すなわちA^T =-Aをみたす行列を指します。
線形代数学

エルミート行列の定義と性質4つとその証明

エルミート行列 (Hermitian matrix) とは,随伴行列(共役転置)と元の行列が等しい正方行列を指します。これについて,定義・具体例と性質を証明付きで紹介しましょう。
線形代数学

対称行列の定義と性質4つとその証明

対称行列 (symmetric matrix) とは,自身とその転置行列が同じである行列を指します。対称行列の定義・性質4つを紹介しましょう。
線形代数学

数ベクトルの定義と数ベクトルにおけるノルム・内積

数ベクトルとは,ざっくりいうと数を並べたものです。数を並べたものを「ベクトル」という一つのかたまりとして扱うことで,いろいろ便利なことがあるわけです。今回は,「便利なこと」の紹介はしませんが,数ベクトルとは何かの定義とノルム・内積といった大切な概念を一気に解説しましょう。
線形代数学

正規行列とは~定義・性質6つとその証明~

正規行列 (normal matrix) とは,AA^*=A^*Aが成り立つ正方行列を指します。ただし,Aの随伴行列(共役転置)です。これについて,その定義・具体例・性質を証明付きで紹介しましょう。