用語・記号の定義

線形代数学

ユニタリ行列の定義と性質10個とその証明

ユニタリ行列 (unitary matrix) とは,UU^* =U^*U= I_nとなる正方行列 U を指します。これについて,定義と性質とその証明を行いましょう。
線形代数学

直交行列の定義と性質10個とその証明

直交行列 (orthogonal matrix) とは,A A^T =A^T A = I_n となる正方行列 A を指します。これについて,定義と性質10個とその証明を行いましょう。
記号・記法

二項演算・単項演算とは

二項演算 (binary operation)・単項演算 (unary operation) は,厳密には集合上の写像として定義されます。これについて,その定義と例を紹介しましょう。
解析学(大学)その他

凸包とは何か~定義と具体例と性質~

集合Aの凸包 (convex hull) とは,Aを含む最小の凸集合を指します。これについて,定義と具体例と性質を述べましょう。
解析学(大学)その他

凸集合とは何かをわかりやすく~定義と性質~

凸集合 (convex set) とは簡単に言うと「へっこんでいない集合」のことをいいます。これについて,ちゃんとした定義と,性質を解説します。
群・環・体

【置換群】対称群・交代群の定義と性質

対称群・交代群はそれぞれ置換・偶置換を集めた集合を表します。「置換・偶置換」とは,行列式の定義に用いたやつです。これについて,詳しい定義や性質を解説しましょう。
群・環・体

巡回群とは~定義・例・性質~

巡回群 (cyclic group) とは,唯一つの元で生成される群を指します。巡回群について,その定義と例・性質4つを順番に紹介しましょう。
群・環・体

群の生成とは~定義と具体例~

群の部分集合によって生成 (generate) される部分群について,その定義と関連する話題を述べます。
群・環・体

群の位数・元の位数とは~定義・例・性質~

群の位数 (order)・元の位数 (order) について,その定義・具体例・性質を順番に解説しましょう。
群・環・体

部分群の定義と判定方法~例4つと性質~

群論における「部分群 (subgroup) 」とは,ある群の部分集合であって,それ自身も群になっているものを指します。これについて,定義とその判定方法について述べ,具体例を通して理解していきましょう。最後には部分群の性質も述べます。