用語・記号の定義

解析学(大学)その他

カントール集合の定義と性質3つの証明

カントール集合 (Cantor set) とは,フラクタルと呼ばれる図形の1つで,連続体濃度を持つにもかかわらず,ルベーグ測度が0となる集合として有名です。カントール集合について,その定義と性質3つとその証明を行いましょう。
集合と位相

【直積集合】集合の直積について詳しく~具体例10個~

集合A,Bに対し,その直積 (direct product) A×Bは,a∈A, b∈Bの対(順序対)(a,b)の集合となります。そんな直積について,2個の直積・n個の直積・無限個の直積を,具体例を添えながら,順番に解説していきましょう。
線形代数学

固有ベクトル・固有空間の定義・求め方・性質

Ax=λxをみたすxを固有ベクトル (eigenvector) といい,その集合を固有空間 (eigenspace) と良います。これについて,その定義を述べてから,求め方を具体例を含め解説し,最後に性質を述べましょう。
微分積分学(大学)

勾配(grad)の定義と意味

数学における勾配 (gradient) とは,多変数関数において各偏微分を並べたもので,grad f や ∇ f とかきます。 これについて,その定義と意味(勾配の向きは最大傾斜方向になっており,その大きさは勾配の大きさであること)を解説しましょう。
微分積分学(大学)

方向微分とは~定義・性質・求め方を詳しく~

多変数関数における「方向微分」ないしは「方向微分係数」(directional derivative) とは,ある方向のみを取り出した微分を指します。これについて,その定義と性質・求め方を詳しく解説しましょう。
線形代数学

連立一次方程式の基本解・特殊解と解空間の性質

連立一次方程式における,基本解 (fundamental solution)・特殊解 (particular solution) と解空間 (solution space) の定義とその性質について,理解しておくべき重要な事項を紹介し,証明しましょう。
線形代数学

随伴行列(エルミート転置,共役転置)の定義と性質10個

随伴行列 (Hermitian transpose),あるいはエルミート転置や共役転置と呼ばれる行列は,元の行列の各成分で複素共役を取り,それを転置させた行列のことを指します。これについて,その定義と具体例,性質を詳しく解説しましょう。
微分積分学(大学)

全微分の定義・性質・求め方を詳しく解説~全微分可能性~

多変数関数における全微分 (total derivative) とは,関数の1次近似と言えます。これについて,定義・図形的意味・性質・求め方を詳しく解説します。まずは2変数関数で扱い,最後にn変数関数の場合について述べます。
統計学

【対数グラフ】片対数グラフ・両対数グラフとその意味

グラフを描くにあたって,しばしば用いられる,片方の軸が対数に対応する目盛である「片対数グラフ」と,両方の軸が対数に対応する目盛である「両対数グラフ」について紹介し,このグラフ上で直線になるような関数はどのようなものか解説します。
微分積分学(大学)

偏微分とは~定義と例題と図形的意味~

多変数関数に関して,ある1変数のみを変数とみて,残りの変数を定数と見たときの微分を偏微分と言います。本記事では,偏微分の定義・例題・図形的意味について,まず2変数関数の場合を考え,それからn変数関数の場合を解説しましょう。