用語・記号の定義

記号・記法

逆関数(逆写像)の定義と性質を厳密に~図解付き~

逆関数(逆写像)の定義と性質について図を交えつつ厳密に説明します。逆関数を厳密に定義するためには,「全単射」という概念が必要です。これについては長くなってしまうため,別の記事で解説していますから,以下を参照してください。
記号・記法

恒等写像(id),包含写像とは何か

恒等写像 (identity map, identity function) と包含写像 (including map, including function) の定義と性質を説明します。
記号・記法

全射・単射・全単射の定義をわかりやすく~具体例を添えて~

全射 (surjection) 単射 (injection) 全単射 (bijection) の定義とそのイメージを理解し,使いこなせるようにしましょう。
記号・記法

関数とは何か,写像とは何かを図解~定義と表記法と具体例~

関数(写像)とは,入力を与えるとある特定の出力を一つ返すものである。これが,「関数(写像)とは何か」という問いの最も簡単な答えです。これについて,数学的に正しく理解しましょう。関数・写像の定義と表記法,そして関数・写像の違いはあるのかどうかについて述べます。
English

【数学英語】略語まとめ

授業やセミナーといった「ラフ」な場面でよく用いられる,数学英語における共通の「略語」を紹介します。なお,自身の身の回りのものを反映しているため,人によって流儀が違う可能性があります。変なものがありましたらお知らせください。
解析学(大学)その他

劣線形性をもつ関数の定義と性質

劣線形的関数 (sublinear function) の定義と具体例・性質をまとめます。
解析学(大学)その他

劣加法性を持つ関数の定義と性質

劣加法的関数 (subadditive function) ・優加法的関数 (superadditive function) の定義とその具体例,そして性質(極限挙動・連続性など)について,証明つきで解説します。
記号・記法

定義・公理・定理・命題・補題・系を完全理解しよう

数学でよく出てくる「定義・公理・定理・命題・補題・系」について,何を表しているか,それらの違いを解説します。これらを正しく理解しておくことは,数学を学ぶ上で必須ですので,完全理解を目指しましょう。
微分積分学(大学)

C1級,Cn級,C∞級関数の定義と具体例5つ

C^1級関数(または連続微分可能)やC^n級関数,C^∞級関数の定義とその具体例について紹介します。1変数の場合はもちろん,最後に多変数の場合も扱います。よく出てくる用語ですから,しっかりと抑えておきましょう。
記号・記法

sign関数(sgn関数,符号関数)とは何か

sign 関数または sgn 関数とは,符号関数と言われる便利関数の一つです。定義と性質を述べます。最後には群論や線形代数で出てくる「置換における符号関数」も紹介します。