測度論 一様可積分性とヴィタリの収束定理 一様可積分性 (uniform integrability) は,とくに有限測度のときに有用です。ここでは,一様可積分性の定義と,一様可積分のときに用いることのできる「ヴィタリの収束定理 (Vitali convergence theorem)」について解説していきましょう。 2022.02.02 測度論
測度論 ルベーグの収束定理(優収束定理)とその例題・証明 ルベーグの収束定理 (優収束定理; dominated convergence theorem, DCT) とは,ルベーグ積分・測度論における「積分と極限の交換定理」の1つで,ルベーグ積分の根幹をなす定理といえます。ルベーグの収束定理について,その主張と例題・証明を行っていきましょう。 2022.01.31 測度論
測度論 Fatouの補題とその証明・具体例・活用例 測度論・ルベーグ積分におけるFatouの補題 (Fatou's lemma;ファトウの補題) は,収束定理の中で大事な定理の一つです。Fatouの補題について,その主張と証明,さらに活用例・具体例を解説していきましょう。 2022.01.30 測度論
測度論 【測度論】単調収束定理とその応用・証明 測度論・ルベーグ積分における単調収束定理 (monotone convergence theorem; MCT) とは,非負可測関数の上昇列に対し,極限と積分の交換が可能であるという定理です。ルベーグ積分における基本的かつ重要な収束定理の一つです。これについて,その主張と証明を行いましょう。 2022.01.29 測度論
測度論 【数学科向け】ルベーグ積分の定義を段階を踏んで解説する 数学科向けに,ルベーグ積分の定義を「非負単関数→非負可測関数→一般の可測関数」の順に述べていきましょう。本記事は「お気持ち」記事ではなく,ルベーグ積分を厳密に定義していきます。測度空間・単関数・可測関数などはある程度既知とします。 2022.01.28 測度論
群・環・体 準同型写像・同型写像の定義と基本的な性質【群・環・体】 代数学における「準同型写像・同型写像」とは,代数の演算の構造を保つ写像のことを指します。とくに,同じ代数構造を持つ2つの集合に同型写像が定まれば,その2つは「同じもの」として扱うことが可能です。準同型写像・同型写像の定義・性質について,群・環・体それぞれについて分けて解説していきましょう。 2022.01.04 群・環・体
群・環・体 剰余群(商群)とは~定義・具体例・性質の証明~ 剰余群(商群)とは,群の剰余類の商集合に演算を入れて再び「群」と思ったものを指します。意味不明かもしれませんが,順を追って解説していきます。剰余群(商群)の定義にあたっては,well-defined の概念が非常に大事になってきますから,そこも踏まえてしっかりと理解していきましょう。 2022.01.03 群・環・体
群・環・体 ラグランジュの定理とその証明・応用例【群論】 ラグランジュの定理(Lagrange's theorem)とは,有限群とその部分群の位数における基本的な定理で,有限群の分類などに非常に役に立つ定理です。ラグランジュの定理について紹介・証明し,応用例も挙げましょう。 2022.01.01 群・環・体
群・環・体 剰余類と部分群の指数~定義と具体例~ 群論における剰余類(左剰余類・右剰余類)と剰余集合(左剰余集合・右剰余集合)と部分群の指数の概念を,手順を追って解説していきます。少々長いですが,群論における基本的で重要な概念ですから,ゆっくりと理解していきましょう。 2021.12.31 群・環・体
測度論 ほとんどいたるところ(almost everywhere, a.e.)の議論 測度論においては,ほとんどいたるところ(almost everywhere, a.e.)を用いた議論が頻繁に出てきます。 「ほとんどいたるところ」の定義と具体例について,丁寧に解説しましょう。 2021.12.28 測度論